• 제목/요약/키워드: elastic loss

검색결과 240건 처리시간 0.029초

구와 평면간의 구름접촉거동에 관한 연구 (A Study on Rolling Contact Behaviors of a Flat Rough Surface with a Smooth Ball)

  • 김경모;정인성
    • 대한기계학회논문집
    • /
    • 제14권3호
    • /
    • pp.554-570
    • /
    • 1990
  • 본 연구에서는 동적인 상태에서 구름접촉 거동을 좀더 명확히 하기 위해서 마 찰의 발생기구가 탄성이력손실에 기인한다는 이론을 기초로 압축 코일스프링을 이용한 감쇠자유진동시스템으로 구성된 실험장치에 의해서 구의 직경, 수직하중, 평면만의 표 면거칠기를 변화시켜 구름접촉면의 감쇠특성을 검토하고 이로부터 구름마찰력과 대수 감쇠율을 구한 다음 대수감쇠율과 진폭의 관계를 이용해서 실험에 의한 새로운 접촉폭 산출방법을 제시하고 Hertz이론에 의한 접촉폭과 마찰이론의 역학적 해석에 의한 접촉 폭과 비교, 분석해 보았다.

Ranking subjects based on paired compositional data with application to age-related hearing loss subtyping

  • Nam, Jin Hyun;Khatiwada, Aastha;Matthews, Lois J.;Schulte, Bradley A.;Dubno, Judy R.;Chung, Dongjun
    • Communications for Statistical Applications and Methods
    • /
    • 제27권2호
    • /
    • pp.225-239
    • /
    • 2020
  • Analysis approaches for single compositional data are well established; however, effective analysis strategies for paired compositional data remain to be investigated. The current project was motivated by studies of age-related hearing loss (presbyacusis), where subjects are classified into four audiometric phenotypes that need to be ranked within these phenotypes based on their paired compositional data. We address this challenge by formulating this problem as a classification problem and integrating a penalized multinomial logistic regression model with compositional data analysis approaches. We utilize Elastic Net for a penalty function, while considering average, absolute difference, and perturbation operators for compositional data. We applied the proposed approach to the presbyacusis study of 532 subjects with probabilities that each ear of a subject belongs to each of four presbyacusis subtypes. We further investigated the ranking of presbyacusis subjects using the proposed approach based on previous literature. The data analysis results indicate that the proposed approach is effective for ranking subjects based on paired compositional data.

고탄성 런닝화가 생체역학적 요소에 미치는 영향 (Effect of High Elastic Running Shoes on Biomechanical Factors)

  • Lee, Jungho
    • 한국운동역학회지
    • /
    • 제30권4호
    • /
    • pp.285-291
    • /
    • 2020
  • Objective: Shoes midsole are crucial for reducing impact forces on the lower extremity when someone is running. Previous studies report that the cushioning of running shoes make it possible to use less muscular energies. However, the well cushioned shoes result in energy loss as the shoe midsole is compressed. Cushioning reduces the load on the body, it also results in the use of more muscle energy to create propulsion force. The purpose of this study was to investigate the effect of the difference of shoe hardness & resilience on the running. Method: Shoes midsole are crucial for reducing impact forces on the lower extremity when someone is running. Previous studies report that the cushioning of running shoes make it possible to use less muscular energies. However, the well cushioned shoes result in energy loss as the shoe midsole is compressed. Cushioning reduces the load on the body, it also results in the use of more muscle energy to create propulsion force. The purpose of this study was to investigate the effect of the difference of shoe hardness & resilience on the running. Results: In vastus lateralis muscle Activation, Type 55 were significantly higher for Type 50 and X (p=0.019, p=0.045). In Gluteus Maximus muscle activation, Type 55 was significantly lower for type 50 (p=0.005). In loading late, Type 55 and X were significantly higher for type 45 (p=0.008, p=0.006). Conclusion: The components of a shoe are very complex, and there can be many differences in manufacturing as well. Although some differences can be found in the biomechanical variables of the high elastic midsole, it is difficult to interpret the performance enhancement and injury prevention.

비구속형 점탄성 제진층을 갖는 보의 제진층 길이 최적화 (Length Optimization for Unconstrained Visco-elastic Damping Layer of Beams)

  • 이두호;황우석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.665-671
    • /
    • 2003
  • Length of an unconstrained viscoelastic damping layer on beams is determined to maximize loss factor using a numerical search method. The fractional derivative model can describe damping characteristics of the viscoelastic damping material, and is used to represent nonlinearity of complex modulus with frequencies and temperatures. Equivalent flexural rigidity of the unconstrained beam is obtained using Ross, Ungar, Kerwin(RUK) equation. The loss factors of partially covered unconstrained beam are calculated by a modal strain energy method. Optimal lengths of the unconstrained viscoelastic damping layer of beams are obtained with respect to ambient temperatures and thickness ratios of beam and damping layer.

  • PDF

굽힘진동 감쇠를 위한 구속층의 최적설계에 관한 연구 (A Study on the Optimum Design of Constrained layer for the Damping of Flexural Vibration)

  • 김사수;이민우
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.95-101
    • /
    • 1997
  • A general method is presented for the analysis of the damping effectiveness of viscoelastic layer applied to elastic beam. The damping is attributed to the shear deformations of the treatment. Specific results are then given for sandwich beams with dissipative cores. The calculated results by this method are validated by comparison with the experimental results. Optimum design of a viscoelastic damping layer which is constrainedly cohered on a steel beam is discussed from the viewpoint of the modal loss factor. An object function is a loss factor of 3-layered beam and design variable is the thickness of constraining layer and viscoelastic layer. Optimum thickness can be obtained when 3-layered beam has a maximum loss factor.

  • PDF

Elastic modulus of ASR-affected concrete: An evaluation using Artificial Neural Network

  • Nguyen, Thuc Nhu;Yu, Yang;Li, Jianchun;Gowripalan, Nadarajah;Sirivivatnanon, Vute
    • Computers and Concrete
    • /
    • 제24권6호
    • /
    • pp.541-553
    • /
    • 2019
  • Alkali-silica reaction (ASR) in concrete can induce degradation in its mechanical properties, leading to compromised serviceability and even loss in load capacity of concrete structures. Compared to other properties, ASR often affects the modulus of elasticity more significantly. Several empirical models have thus been established to estimate elastic modulus reduction based on the ASR expansion only for condition assessment and capacity evaluation of the distressed structures. However, it has been observed from experimental studies in the literature that for any given level of ASR expansion, there are significant variations on the measured modulus of elasticity. In fact, many other factors, such as cement content, reactive aggregate type, exposure condition, additional alkali and concrete strength, have been commonly known in contribution to changes of concrete elastic modulus due to ASR. In this study, an artificial intelligent model using artificial neural network (ANN) is proposed for the first time to provide an innovative approach for evaluation of the elastic modulus of ASR-affected concrete, which is able to take into account contribution of several influence factors. By intelligently fusing multiple information, the proposed ANN model can provide an accurate estimation of the modulus of elasticity, which shows a significant improvement from empirical based models used in current practice. The results also indicate that expansion due to ASR is not the only factor contributing to the stiffness change, and various factors have to be included during the evaluation.

전단응력하의 무한체내 타원체불균질물의 균열손상에 따른 하중부하능력과 탄성응력분포 (Load Carrying Capacity due to Cracking Damage of Ellipsoidal Inhomogeneity in Infinite Body under Pure Shear and Its Elastic Stress Distributions)

  • 조영태;임광희;고재용;김홍건
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.87-90
    • /
    • 2001
  • In particle or short-fiber reinforced composites, cracking of the reinforcements is a significant damage mode because the broken reinforcements lose load carrying capacity. This paper deals with elastic stress distributions and load carrying capacity of intact and cracked ellipsoidal inhomogeneities. Three dimensional finite element analysis has been carried out on intact and broken ellipsoidal inhomogeneities in an infinite body under pure shear. For the intact inhomogeneity, as well known as Eshelby(1957) solution, the stress distribution is uniform in the inhomogeneity and non-uniform in the surrounding matrix. On the other hand, for the broken inhomogeneity, the stress in the region near crack surface is considerably released and the stress distribution becomes more complex. The average stress in the inhomogeneity represents its load carrying capacity, and the difference of average stresses between the intact and broken inhomogeneities indicates the loss of load carrying capacity due to cracking damage. The load carrying capacity of the broken inhomogeneity is expressed in terms of the average stress of the intact inhomogeneity and some coefficients. It is found that the broken inhomogeneity with higher aspect ratio still maintains higher load carrying capacity.

  • PDF

Influence of high temperature on mechanical properties of concrete containing recycled fine aggregate

  • Liang, Jiong-Feng;Wang, En;Zhou, Xu;Le, Qiao-Li
    • Computers and Concrete
    • /
    • 제21권1호
    • /
    • pp.87-94
    • /
    • 2018
  • This paper presents the results of an experimental study to investigate the influences of high temperatures on the mechanical properties of concrete containing recycled fine aggregate. A total of 150 concrete prisms ($100{\times}100{\times}300mm$) and 150 concrete cubes ($100{\times}100{\times}100mm$) are cast and heated under five different temperatures ($20^{\circ}C$, $200^{\circ}C$, $400^{\circ}C$, $600^{\circ}C$, $800^{\circ}C$) for test. The results show that the mass loss, compressive strength, elastic modulus, splitting tensile strength of concrete specimens containing recycled fine aggregate decline significantly as the temperature rise. At the same temperature, the compressive strength, splitting tensile strength, elastic modulus of concrete specimens containing recycled coarse aggregate and recycled fine aggregate (RHC) is lower than that of concrete specimens containing natural coarse aggregate and recycled fine aggregate (RFC). The shape of stress-strain curves of concrete specimens at different temperatures is different, and the shape of that become flatter as the temperature rises. Normal concrete has better energy absorption capacity than concrete containing recycled fine aggregate.

뜬바닥구조를 이용한 선박 격실의 소음.진동 저감에 관한 연구 (A Study on the Reduction of Noise and Vibration in Ship Cabins by Using floating Floor)

  • 김현실;김재승;강현주;김봉기;김상렬
    • 한국소음진동공학회논문집
    • /
    • 제16권9호
    • /
    • pp.949-957
    • /
    • 2006
  • In this Paper, reduction of noise and vibration in ship cabins by using floating floor is studied. Two theoretical models are presented and predicted insertion losses of floating floor are compared to experimental results, where measurements have been done in mock-up built for simulating typical ship cabin structures. In ships, mineral wool is usually used as the impact absorbing materials. The first model (M-S-Plate Model) is that upper plate and mineral wool are assumed as a one-dimensional mass-spring system, which is in turn attached to the simply supported elastic floor. The second model (Wave-Plate Model) is that mineral wool is assumed as an elastic medium for wave propagation. The comparisons show that M-S-Plate model is in good agreement with experimental results when density of mineral wool is 140K, and fiber direction is horizontal. For higher density and vertical fiber direction, Wave-Plate model shows good agreements with measurements. It is found that including the elastic behavior of the floor is essential in improving accuracy of the prediction for low frequency ranges below $100{sim}200Hz$.

Elastic Analysis of a Cracked Ellipsoidal Inhomogeneity in an Infinite Body

  • Cho, Young-Tae
    • Journal of Mechanical Science and Technology
    • /
    • 제15권6호
    • /
    • pp.709-719
    • /
    • 2001
  • In particle or short-fiber reinforced composites, cracking of reinforcements is a significant damage mode because the cracked reinforcements lose carrying capacity. This paper deals with elastic stress distributions and load carrying capacity of intact and cracked ellipsoidal inhomogeneities. Three dimensional finite element analysis has been carried out on intact and cracked ellipsoidal inhomogeneities in an infinite body under uniaxial tension and pure shear. For the intact inhomogeneity, as well known as Eshelbys solution, the stress distribution is uniform in the inhomogeneity and nonuniform in the surrounding matrix. On the other hand, for the cracked inhomogeneity, the stress in the region near the crack surface is considerably released and the stress distribution becomes more complex. The average stress in the inhomogeneity represents its load carrying capacity, and the difference between the average stresses of the intact and cracked inhomogeneities indicates the loss of load carrying capacity due to cracking damage. The load carrying capacity of the cracked inhomogeneity is expressed in to cracking damage. The load carrying capacity of the cracked inhomogeneity is expressed in terms of the average stress of the intact inhomogeneity and some coefficients. It is found that a cracked inhomogeneity with high aspect ratio still maintains higher load carrying capacity.

  • PDF