• 제목/요약/키워드: elastic lateral stiffness

검색결과 119건 처리시간 0.026초

Seismic torsional vibration in elevated tanks

  • Dutta, Sekhar Chandra;Murty, C.V.R.;Jain, Sudhir K.
    • Structural Engineering and Mechanics
    • /
    • 제9권6호
    • /
    • pp.615-636
    • /
    • 2000
  • Some elevated water tanks have failed due to torsional vibrations in past earthquakes. The overall axisymmetric structural geometry and mass distribution of such structures may leave only a small accidental eccentricity between centre of stiffness and centre of mass. Such a small accidental eccentricity is not expected to cause a torsional failure. This paper studies the possibility of amplified torsional behaviour of elevated water tanks due to such small accidental eccentricity in the elastic as well as inelastic range; using two simple idealized systems with two coupled lateral-torsional degrees of freedom. The systems are capable of retaining the characteristics of two extreme categories of water tanks namely, a) tanks on staging with less number of columns and panels and b) tanks on staging with large number of columns and panels. The study shows that the presence of a small eccentricity may lead to large displacement of the staging edge in the elastic range, if the torsional-to-lateral time period ratio $({\tau})$ of the elevated tanks lies within a critical range of 0.7< ${\tau}$ <1.25. Inelastic behaviour study reveals that such excessive displacement in some of the reinforced concrete staging elements may cause unsymmetric yielding. This may lead to progressive strength deterioration through successive yielding in same elements under cyclic loading during earthquakes. Such localized strength drop progressively develop large strength eccentricity resulting in large localized inelastic displacement and ductility demand, leading to failure. So, elevated water tanks should have ${\tau}$ outside the said critical range to avoid amplified torsional response. The tanks supported on staging with less number of columns and panels are found to have greater torsional vulnerability. Tanks located near faults seem to have torsional vulnerability for large ${\tau}$.

비대칭(非對稱) 박벽(薄壁)보 요소(要素)를 이용(利用)한 원형(圓形) 아치의 횡좌굴(橫挫屈) 해석(解析) (Lateral-Torsional Buckling Analysis of the Circular Arches Using Unsymmetric Thin-Walled Beam Elements)

  • 김문영
    • 대한토목학회논문집
    • /
    • 제13권5호
    • /
    • pp.39-52
    • /
    • 1993
  • 비대칭단면(非對稱斷面)을 갖는 박벽공간(薄壁空間)뼈대와 원형(圓形)아아치의 휨-비틂 좌굴해석(挫屈解析)을 수행하기 위하여, 가상(假想)일의 원리(原理)를 이용한 공간(空間)뼈대요소(要素)의 접선강도(接線剛度)매트릭스가 유도(誘導)된다. 양단(兩端) 구속(狗束)된 비틂을 무시(無視)하는 경우와 구속(狗束)된 비틂을 고려(考慮)하는 경우 각각에 대하여 semitangential rotation and moment에 대응(對應)하는 박벽공간(薄壁空間) 뼈대요소(要素)의 탄성(彈性) 및 기하적(幾何的)인 강도(剛度)매트릭스를 산정한다. 이 때, 휨을 받는 평면(平面)보의 처짐함수를 공간(空間) 뼈대요소(要素)의 축방향(軸方向) 및 횡방향(橫方向) 처짐과 비틂회전각에 대한 형상함수(形狀函數)로 사용한다. 순수휨과 균일한 압축력을 받는 도형(圖形)아아치의 횡좌굴문제(橫挫屈問題)를 해석(解析)하여 본(本) 연구(硏究)에 의한 해석결과(解析結果)과 문헌(文獻)의 엄밀해(嚴密解)에 의한 결과들을 비교(比較), 분석(分析)하여 본(本) 연구(硏究)에서 제시한 이론(理論)의 정당성(正當性)을 입증(立證)한다.

  • PDF

Analytical investigation on lateral load responses of self-centering walls with distributed vertical dampers

  • Huang, Xiaogang;Zhou, Zhen;Zhu, Dongping
    • Structural Engineering and Mechanics
    • /
    • 제72권3호
    • /
    • pp.355-366
    • /
    • 2019
  • Self-centering wall (SCW) is a resilient and sustainable structural system which incorporates unbonded posttensioning (PT) tendons to provide self-centering (SC) capacity along with supplementary dissipators to dissipate seismic energy. Hysteretic energy dissipators are usually placed at two sides of SCWs to facilitate ease of postearthquake examination and convenient replacement. To achieve a good prediction for the skeleton curve of the wall, this paper firstly developed an analytical investigation on lateral load responses of self-centering walls with distributed vertical dampers (VD-SCWs) using the concept of elastic theory. A simplified method for the calculation of limit state points is developed and validated by experimental results and can be used in the design of the system. Based on the analytical results, parametric analysis is conducted to investigate the influence of damper and tendon parameters on the performance of VD-SCWs. The results show that the proposed approach has a better prediction accuracy with less computational effects than the Perez method. As compared with previous experimental results, the proposed method achieves up to 60.1% additional accuracy at the effective linear limit (DLL) of SCWs. The base shear at point DLL is increased by 62.5% when the damper force is increased from 0kN to 80kN. The wall stiffness after point ELL is reduced by 69.5% when the tendon stiffness is reduced by 75.0%. The roof deformation at point LLP is reduced by 74.1% when the initial tendon stress is increased from $0.45f_{pu}$ to $0.65f_{pu}$.

조밀한 포화 실트질 모래지반에서 횡방향 반복하중을 받는 말뚝의 p-y 거동 평가 (Assessment of p-y Behaviors of a Cyclic Laterally Loaded Pile in Saturated Dense Silty Sand)

  • 백성하;최창호;조진우;정충기
    • 한국지반공학회논문집
    • /
    • 제35권11호
    • /
    • pp.97-110
    • /
    • 2019
  • 해상풍력 구조물을 지지하는 말뚝기초는 바람, 파랑, 조류 등에 의한 횡방향 반복하중을 지배적으로 받는다. 해상풍력 구조물의 안정적인 성능확보를 위해서 횡방향 반복하중을 받는 말뚝기초의 지지거동을 적절히 평가해 설계에 적용할 필요가 있으며, 말뚝 및 지반을 각각 탄성빔과 비선형 스프링으로 가정하는 p-y 곡선방법이 가장 널리 활용되고 있다. 본 연구에서는 조밀한 포화 실트질 모래지반에 설치되어 횡방향 반복하중을 받는 말뚝기초의 p-y 거동을 평가하기 위해서, 1g 모형말뚝시험을 수행했다. 모형시험 결과, 말뚝에 횡방향 반복하중 재하 시 p-y 곡선의 강성(초기기울기 및 최대지반반력)이 점차 감소했다. p-y 곡선의 강성감소는 반복하중의 크기가 크고 지표면에 가까운 위치에서 더 명확하게 나타났는데, 상기조건에서 말뚝 주변지반의 교란효과가 크게 발생해 지반의 지지능력이 더욱 크게 감소했기 때문이다. 모형시험 결과를 활용해 조밀한 포화 실트질 모래지반에 설치되어 횡방향 반복하중을 받는 말뚝기초의 p-y 곡선을 제안했다. 등가정적해석을 통해 예측된 말뚝거동을 모형시험결과와 비교한 결과, 제안된 식을 통해 비교적 조밀하고 포화된 실트질 모래지반에서 반복하중을 받는 말뚝의 횡방향 지지거동을 적절히 평가할 수 있음을 확인했다.

Performance comparison of shear walls with openings designed using elastic stress and genetic evolutionary structural optimization methods

  • Zhang, Hu Z.;Liu, Xia;Yi, Wei J.;Deng, Yao H.
    • Structural Engineering and Mechanics
    • /
    • 제65권3호
    • /
    • pp.303-314
    • /
    • 2018
  • Shear walls are a typical member under a complex stress state and have complicated mechanical properties and failure modes. The separated-elements model Genetic Evolutionary Structural Optimization (GESO), which is a combination of an elastic-plastic stress method and an optimization method, has been introduced in the literature for designing such members. Although the separated-elements model GESO method is well recognized due to its stability, feasibility, and economy, its adequacy has not been experimentally verified. This paper seeks to validate the adequacy of the separated-elements model GESO method against experimental data and demonstrate its feasibility and advantages over the traditional elastic stress method. Two types of reinforced concrete shear wall specimens, which had the location of an opening in the middle bottom and the center region, respectively, were utilized for this study. For each type, two specimens were designed using the separated-elements model GESO method and elastic stress method, respectively. All specimens were subjected to a constant vertical load and an incremental lateral load until failure. Test results indicated that the ultimate bearing capacity, failure modes, and main crack types of the shear walls designed using the two methods were similar, but the ductility indexes including the stiffness degradation, deformability, reinforcement yielding, and crack development of the specimens designed using the separated-elements model GESO method were superior to those using the elastic stress method. Additionally, the shear walls designed using the separated-elements model GESO method, had a reinforcement layout which could closely resist the actual critical stress, and thus a reduced amount of steel bars were required for such shear walls.

Effects of openings geometry and relative area on seismic performance of steel shear walls

  • Massumi, Ali;Karimi, Nasibeh;Ahmadi, Mostafa
    • Steel and Composite Structures
    • /
    • 제28권5호
    • /
    • pp.617-628
    • /
    • 2018
  • Steel shear wall possesses priority over many of the current lateral load-bearing systems due to reasons like higher elastic stiffness, desirable ductility and energy absorption, convenience in construction and implementation technology, and economic criteria. Besides these advantages, this system causes increase in the dimensions of other structural elements due to its high stiffness as one of its intrinsic characteristics. One of the methods for stiffness reduction is perforating the wall panel and creating openings in the wall that can also be used as windows or ducts in buildings service period. The aim of the present study is probing the appropriate geometric shape and location of opening to fulfil economic criterion plus technical and seismic design criteria. In the present research, a number of possible while reasonable opening shapes and locations are defined in various sizes for some steel shear wall specimens. The specimens are modelled in ABAQUS finite elements software and analyzed using nonlinear pushover analysis. Finally, the analyses' results are reported as force-displacement diagrams and the strength, the initial stiffness and the energy absorption are calculated for all specimens and compared together. The obtained results show that both shape and location of the openings affect the seismic parameters of the shear wall. The specimens in which the openings are further from the center and closer to the columns possess higher stiffness and strength while the specimens in which the openings are closer to the center show more considerable changes in their seismic parameters in response to increase in opening area.

횡하중에 대한 휨재의 부모멘트 재분배 (Redistribution of Negative Moments in Beams Subjected to Lateral Load)

  • 엄태성
    • 콘크리트학회논문집
    • /
    • 제23권6호
    • /
    • pp.731-740
    • /
    • 2011
  • KCI 2007, ACI 318-08에 제시된 모멘트재분배 방법은 등분포 중력하중을 받는 연속 휨재에 대하여 검증된 방법이다. 횡하중에 의한 모멘트재분배 및 비탄성 거동은 중력하중과 전혀 다른 메커니즘을 발생된다. 이 연구에서는 기초역학에 근거하여 중력하중과 횡하중을 받는 철근콘크리트 모멘트골조의 보에 발생되는 모멘트재분배와 소성변형의 관계를 정량화하고, 이로부터 보의 소성변형능력에 근거한 모멘트재분배 설계법을 제안하였다. 제안된 모멘트재분배비는 KCI 2007, ACI 318-08 등 기존 설계기준과 마찬가지로 극한한계상태의 단면해석으로 결정되는 철근의 인장변형률로 정의된다. 또한 모멘트재분배비는 경간, 철근비, 단면강성, 변형경화 거동에 의하여 영향을 받는다. 제안된 방법을 사용하여 탄성해석으로 구한 설계모멘트를 재분배시키는 설계 가이드라인 및 예제를 제시하였다.

Experimental and theoretical studies of confined HSCFST columns under uni-axial compression

  • Lai, M.H.;Ho, J.C.M.
    • Earthquakes and Structures
    • /
    • 제7권4호
    • /
    • pp.527-552
    • /
    • 2014
  • The development of modern concrete technology makes it much easier to produce high-strength concrete (HSC) or ultra-high-strength concrete (UHSC) with high workability. However, the application of this concrete is limited in practical construction of traditional reinforced concrete (RC) structures due to low-ductility performance. To further push up the limit of the design concrete strength, concrete-filled-steel-tube (CFST) columns have been recommended considering its superior strength and ductility performance. However, the beneficial composite action cannot be fully developed at early elastic stage as steel dilates more than concrete and thereby reducing the elastic strength and stiffness of the CFST columns. To resolve this problem, external confinement in the form of steel rings is proposed in this study to restrict the lateral dilation of concrete and steel. In this paper, a total of 29 high-strength CFST (HSCFST) columns of various dimensions cast with concrete strength of 75 to 120 MPa concrete and installed with external steel rings were tested under uni-axial compression. From the results, it can be concluded that the proposed ring installation can further improve both strength and ductility of HSCFST columns by restricting the column dilation. Lastly, an analytical model calculating the uni-axial strength of ring-confined HSCFST columns is proposed and verified based on the Von-Mises and Mohr-Coulomb failure criteria for steel tube and in-filled concrete, respectively.

Passive p-y curves for rigid basement walls supporting granular soils

  • Imad, Elchiti;George, Saad;Shadi S., Najjar
    • Geomechanics and Engineering
    • /
    • 제32권3호
    • /
    • pp.335-346
    • /
    • 2023
  • For structures with underground basement walls, the soil-structure-interaction between the side soil and the walls affects the response of the system. There is interest in quantifying the relationship between the lateral earth pressure and the wall displacement using p-y curves. To date, passive p-y curves in available limited studies were assumed elastic-perfectly plastic. In reality, the relationship between earth pressure and wall displacement is complex. This paper focuses on studying the development of passive p-y curves behind rigid walls supporting granular soils. The study aims at identifying the different components of the passive p-y relationship and proposing a rigorous non-linear p-y model in place of simplified elastic-plastic models. The results of the study show that (1) the p-y relationship that models the stress-displacement response behind a rigid basement wall is highly non-linear, (2) passive p-y curves are affected by the height of the wall, relative density, and depth below the ground surface, and (3) passive p-y curves can be expressed using a truncated hyperbolic model that is defined by a limit state passive pressure that is determined using available logarithmic spiral methods and an initial slope that is expressed using a depth-dependent soil stiffness model.

Experimental studies on steel frame structures of traditional-style buildings

  • Xue, Jianyang;Qi, Liangjie
    • Steel and Composite Structures
    • /
    • 제22권2호
    • /
    • pp.235-255
    • /
    • 2016
  • This paper experimentally investigated the behavior of steel frame structures of traditional-style buildings subjected to combined constant axial load and reversed lateral cyclic loading conditions. The low cyclic reversed loading test was carried out on a 1/2 model of a traditional-style steel frame. The failure process and failure mode of the structure were observed. The mechanical behaviors of the steel frame, including hysteretic behaviors, order of plastic hinges, load-displacement curve, characteristic loads and corresponding displacements, ductility, energy dissipation capacity, and stiffness degradation were analyzed. Test results showed that the Dou-Gong component (a special construct in traditional-style buildings) in steel frame structures acted as the first seismic line under the action of horizontal loads, the plastic hinges at the beam end developed sufficiently and satisfied the Chinese Seismic Design Principle of "strong columns-weak beams, strong joints-weak members". The pinching phenomenon of hysteretic loops occurred and it changed into Z-shape, indicating shear-slip property. The stiffness degradation of the structure was significant at the early stage of the loading. When failure, the ultimate elastic-plastic interlayer displacement angle was 1/20, which indicated high collapse resistance capacity of the steel frame. Furthermore, the finite element analysis was conducted to simulate the behavior of traditional-style frame structure. Test results agreed well with the results of the finite element analysis.