• Title/Summary/Keyword: elastic joint design

Search Result 103, Processing Time 0.026 seconds

An Elastic Joint Manipulator for a Human friendly robot

  • Takahashi, Takayuki;Murayama, Yasushi;Wang, Zhi-Dong;Nakano, Eiji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.44.3-44
    • /
    • 2001
  • This articles describes a novel design elastic joint manipulator for a mobile robot, which works in an office environment with humans. The primary goal of this manipulator design is safeness on collision and contact. To achieve this, each joint is made of an elastic element and this is driver with a high ratio gear tram. The performance was verified, however, it has a serious drawback. It produce vibration, due to the elastic joints and high ratio gear train. We found that a sliding mode controller has an excellent performance for reducing such vibration. Results of computer simulation and experiments are shown.

  • PDF

Buckling of aboveground oil storage tanks under internal pressure

  • Yoshida, Shoichi
    • Steel and Composite Structures
    • /
    • v.1 no.1
    • /
    • pp.131-144
    • /
    • 2001
  • Overpressurization can occur due to the ignition of flammable vapors existing inside aboveground oil storage tanks. Such accidents could happen more frequently than other types of accident. In the tank design, when the internal pressure increases, the sidewall-to-roof joint is expected to fail before failure occurs in the sidewall-to-bottom joint. This design concept is the socalled "frangible roof joint" introduced in API Standard 650. The major failure mode is bifurcation buckling in this case. This paper presents the bifurcation buckling pressures in both joints under internal pressure. Elastic and elastic-plastic axisymmetric shell finite element analysis was performed involving large deformation in the prebuckling state. Results show that API Standard 650 does not evaluate the frangible roof joint design conservatively in small diameter tanks.

Optimization of the Elastic Joint of Train Bogie Using by Response Surface Model (반응표면모델에 의한 철도 차량 대차의 탄성조인트 최적설계)

  • Park, Chan-Gyeong;Lee, Gwang-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.661-666
    • /
    • 2000
  • Optimization of the elastic joint of train is performed according to the minimization of ten responses which represent driving safety and ride comfort of train and analyzed by using the each response se surface model from stochastic design of experiments. After the each response surface model is constructed, the main effect and sensitivity analyses are successfully performed by 2nd order approximated regression model as described in this paper. We can get the optimal solutions using by nonlinear programming method such as simplex or interval optimization algorithms. The response surface models and the optimization algorithms are used together to obtain the optimal design of the elastic joint of train. the ten 2nd order polynomial response surface models of the three translational stiffness of the elastic joint (design factors) are constructed by using CCD(Central Composite Design) and the multi-objective optimization is also performed by applying min-max and distance minimization techniques of relative target deviation.

Ground Beam-Joint Topology Optimization for Design and Assembly of Multi-Piece Frame Structures (그라운드 빔 조인트 기반 위상최적화법을 이용한 프레임 구조물의 조립 위치 및 강도 설정)

  • Jang, Gang-Won;Kim, Myeong-Jin;Kim, Yun-Yeong
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.688-693
    • /
    • 2007
  • Most frame structures cannot be manufactured in a single-piece form. Ideally, when a structure is built up by assembling multi pieces, assembly at the joints should be rigidly performed enough to have almost full stiffness, which is difficult for practical reasons such as manufacturing cost and time. In this research, we aim to develop a manufacturability-oriented compliance-minimizing topology optimization using a ground beam model incorporating additional zero-length elastic joint elements. In the present formulation, design variables control the stiffness of zero-length elastic joints, not the stiffness of beams. Because joint stiffness values at the converged state can be utilized to select candidate assembly locations and their strengths, the technique is extremely useful to design multi-piece frame structures. An optimal layout is also extracted based on the stiffness values.

  • PDF

Numerical study on the resonance behavior of submerged floating tunnels with elastic joint

  • Park, Joohyun;Kang, Seok-Jun;Hwang, Hyun-Joong;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.207-218
    • /
    • 2022
  • In submerged floating tunnels (SFTs), a next-generation maritime transportation infrastructure, the tunnel module floats in water due to buoyancy. For the effective and economical use of SFTs, connection with the ground is inevitable, but the stability of the shore connection is weak due to stress concentration caused by the displacement difference between the subsea bored tunnel and the SFT. The use of an elastic joint has been proposed as a solution to solve the stability problem, but it changes the dynamic characteristics of the SFT, such as natural frequency and mode shape. In this study, the finite element method (FEM) was used to simulate the elastic joints in shore connections, assuming that the ground is a hard rock without displacement. In addition, a small-scale model test was performed for FEM model validation. A parametric study was conducted on the resonance behavior such as the natural frequency change and velocity, stress, and reaction force distribution change of the SFT system by varying the joint stiffness under loading conditions of various frequencies and directions. The results indicated that the natural frequency of the SFT system increased as the stiffness of the elastic joint increased, and the risk of resonance was the highest in the low-frequency environment. Moreover, stress concentration was observed in both the SFT and the shore connection when resonance occurred in the vertical mode. The results of this study are expected to be utilized in the process of quantitative research such as designing elastic joints to prevent resonance in the future.

Research on the tightening strategy of bolted flange for contact stiffness of joint surface

  • Zuo, Weiliang;Liu, Zhifeng;Zhao, Yongsheng;Niu, Nana;Zheng, Mingpo
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.341-351
    • /
    • 2022
  • During bolted flange assembly, the contact stiffness of some areas of the joint surface may be low due to the elastic interaction. In order to improve the contact stiffness at the lowest position of bolted flange, the correlation model between the initial bolt pre-tightening force and the contact stiffness of bolted flange is established in this paper. According to the stress distribution model of a single bolt, an assumption of uniform local contact stiffness of bolted flange is made. Moreover, the joint surface is divided into the compressive stress region and the elastic interaction region. Based on the fractal contact theory, the relationship model of contact stiffness and contact force of the joint surface is proposed. Considering the elastic interaction coefficient method, the correlation model of the initial bolt pre-tightening force and the contact stiffness of bolted flange is established. This model can be employed to reverse determine the tightening strategy of the bolt group according to working conditions. As a result, this provides a new idea for the digital design of tightening strategy of bolt group for contact stiffness of bolted flange. The tightening strategy of the bolted flange is optimized by using the correlation model of initial bolt pre-tightening force and the contact stiffness of bolted flange. After optimization, the average contact stiffness of the joint surface increased by 5%, and the minimum contact stiffness increased by 6%.

Effects of Elastic Band-Resistive Exercise using Audio-visual Medium on Pain, Proprioceptive Sense, and Motor Function in Adult Females with Chronic Neck and Shoulder Pain (만성 목-어깨 통증이 있는 여성 성인에게 시청각 매체를 활용한 탄력밴드 저항운동이 통증, 고유수용성 감각과 운동기능에 미치는 영향)

  • Nam Gi Lee;Jeong-Woo Lee
    • Journal of Korean Physical Therapy Science
    • /
    • v.31 no.1
    • /
    • pp.33-45
    • /
    • 2024
  • Background: This study aimed to investigate the effect of elastic band-resistive exercise using audio-visual medium on pain, proprioception, and motor function in adults with chronic neck and shoulder pain. Design: One group pretest-posttest follow-up experimental design. Method: Twenty adult women with neck and shoulder pain voluntarily participated in this study. Elastic band-resistive exercise using audio-visual medium including cervical flexion and extension, shoulder external rotation, and scapular retraction-protraction motions was conducted 5 times a week for 3 weeks. The Numerical Rating Scale, pressure threshold tool, CROM goniometer, and Image J software were used to assess subjective pain level, tenderness threshold (pain), joint position sense error (proprioception), joint range of motion, and postural alignment (motor function), respectively. Result:: The pain intensity and threshold and joint position sense error showed significant decreases after the intervention, whereas the joint range of motion angle revealed significant increases. The postural alignment including forward head posture and rounded shoulder revealed significant improvements after the intervention. Conclusions: Therefore, we suggest that elastic band-resistive exercise through audio-visual medium would be helpful in preventing and managing pain and physical dysfunction in individuals with chronic neck and shoulder pain, and then it would support the development of health management-related online education content.

Development of a Single-Joint Optical Torque Sensor with One Body Structure (일체형 구조를 갖는 1축 광학 토크 센서 개발)

  • Gu, Gwang-Min;Chang, Pyung-Hun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.218-222
    • /
    • 2011
  • This paper proposes a single-joint optical torque sensor with one body structure. Conventional optical torque sensors consist of three parts, two plates and an elastic structure. They have slightly slipping problem between plates and elastic structure due to the manufacturing tolerance. Since the order of measurement range of optical sensor is about ten micrometers, the slipping problem causes large measurement error, especially in the case of vibrational or high speed plant. This problem does not occur in the proposed design due to the one body structure. The proposed sensor has advantage of low cost, light weight, and small size. And it is easy to design and manufacture. Simulation works that analysis of stress and strain are performed accurately. To demonstrate the performance of proposed sensor, experiments were implemented to compare with a commercial force/torque sensor (ATI Mini45).

The effect of hip joint exercise using an elastic band on dynamic balance, agility and flexibility in healthy subjects: a randomized controlled trial

  • Kang, Dong Hyun;Lee, Woo Hyung;Lim, Song;Kim, Yu Yeong;An, Soung Wook;Kwon, Chang Gyeong;Lee, Gyeong Hee;Choi, Nu Ri;Lee, Na Yeong;Kim, Bo Min;Kim, Jae Hyeon;Chung, Eun Jung
    • Physical Therapy Rehabilitation Science
    • /
    • v.5 no.4
    • /
    • pp.198-204
    • /
    • 2016
  • Objective: The purpose of this study was to examine the effects of hip joint exercise using an elastic band on dynamic balance, agility, and flexibility in healthy subjects. Design: Randomized controlled trial. Methods: Thirty-five subjects (between 19 and 23 years) were randomly allocated to two groups: hip flexion exercise (HFE) group (n=17) and the hip abduction exercise (HAE) group (n=18). The HFE group participated in flexion exercise of the hip joint using an elastic band for 50 minutes a day, three days a week for four weeks, while the HAE group participated in abduction exercises of the hip joint using an elastic band for the same period. Dynamic balance was measured using the timed up and go (TUG) test, agility was measured with the standing long jump, and flexibility was measured using the Schober's test (5 cm, 10 cm). Results: The HFE group showed significant differences in the TUG test, standing long jump, and the Schober's test (10 cm) after training (p<0.05). The HAE group showed significant differences in the TUG test, standing long jump and the Schober's test (5 cm, 10 cm) after training (p<0.05). However, there was no significant difference between the HFE group and the HAE group. Conclusions: Flexion and abduction exercises of the hip joint using and elastic band increased dynamic balance, agility, and flexibility in healthy subjects. Additional research on hip joint exercises using an elastic band for improving dynamic balance, agility and flexibility are necessary.

Effects of Self-help Group Program Including Elastic Band Exercise on ADL and ROM of Hemophilia Patient (탄력밴드운동을 포함한 자조관리 프로그램이 혈우인의 일상생활과 관절가동범위에 미치는 영향)

  • Kang, Hyun-Sook;Kim, Won-Ock
    • Journal of muscle and joint health
    • /
    • v.12 no.2
    • /
    • pp.97-108
    • /
    • 2005
  • Purpose: The purpose of this study was to identify the effects of Self-help group program including Elastic band exercise on ADL and ROM of hemophilia patient. Method: A quasi -experimental design was used. The subjects were 40 young adults with hemophilia (21 experimental group, 19 control group). The subjects of experimental group were participated self-help group program in which five sessions for 5 weeks. The program consisted of health education on hemophilia, elastic band exercise, and therapeutic recreation and its outcomes have been evaluated on ADL and ROM of extremities. The obtained data were analyzed by using the Mann-Whitney U test and ANCOVA of SPSS. Result: 1) The score of ADL increased significantly in the experimental group as compared to the control group. 2) The degree of range of motion of extremities improved in the experimental group as compared to the control group. Conclusion: Considering these research results, the program including elastic band exercise was effective in improving self-management ability and range of motion of extremities. Therefore this program including elastic band exercise could be implemented it as self-management for the hemophilia clients.

  • PDF