• Title/Summary/Keyword: elastic foundation beam method

Search Result 144, Processing Time 0.02 seconds

Improved Numerical Method Evaluating Exact Static Element Stiffness Matrices of Beam on Elastic Foundations (탄성지반위의 보의 엄밀한 강성계산을 위한 개선된 해석방법)

  • Kim Nam-Il;Lee Jun-Seok;Kim Moon-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.589-596
    • /
    • 2006
  • An improved numerical method to obtain the exact element stiffness matrix is newly proposed to perform the spatially coupled elastic and stability analyses of non-symmetric thin-walled beam-columns with two-types of elastic foundation. This method overcomes drawbacks of the previous method to evaluate the exact stiffness matrix for the spatially coupled stability analysis of thin-walled beam-column. This numerical technique is firstly accomplished via a generalized eigenproblem associated with 14 displacement parameters by transforming equilibrium equations to a set of first order simultaneous ordinary differential equations. Then exact displacement functions are constructed by combining eigensolutions and polynomial solutions corresponding to non-zero and zero eigenvalues, respectively. Consequently an exact stiffness matrix is evaluated by applying the member force-deformation relationships to these displacement functions.

  • PDF

Dynamic Analysis of Constrained Mechanical System Moving on a Flexible Beam Structure(I) : General Approach (유연한 보 구조물 위를 이동하는 구속 기계계의 동력학 해석(I) : 일반적인 접근법)

  • Park, Chan-Jong;Park, Tae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.165-175
    • /
    • 2000
  • In recent years, it becomes a very important issue to consider the mechanical systems such as high-speed vehicles and railway trains moving on elastic beam structures. In this paper, a general approach, which can predict the dynamic behavior of constrained mechanical system and elastic beam structure, is proposed. Also, various supporting conditions of a foundation support are considered for the elastic beam structures. The elastic structure is assumed to be a nonuniform and linear Bernoulli-Euler beam with proportional damping effect. Combined Differential-Algebraic Equations of motion are derived using multibody dynamics theory and Finite Element Method. The proposed equations of motion can be solved numerically using generalizd coordinate partitioning method and Predictor-Corrector algorithm, which is an implicit multi-step integration method.

  • PDF

Analysis of elastic foundation plates with internal and perimetric stiffening beams on elastic foundations by using Finite Differences Method

  • Orbanich, C.J.;Ortega, N.F.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.2
    • /
    • pp.169-182
    • /
    • 2013
  • The mechanical behavior of rectangular foundation plates with perimetric beams and internal stiffening beams of the plate is herein analyzed, taking the foundation design into account. A series of dimensionless parameters related to the geometry of the studied elements were defined. In order to generalize the problem statement, an initial settlements was considered. A numeric procedure was developed for the resolution by means of the Finite Differences Method that takes into account the stiffness of the plate, the perimetric and internal plate beams and the soil reaction module. Iterative algorithms were employed which, for each of the analyzed cases, made it possible to find displacements and reaction percentages taken by the plate and those that discharge directly into the perimetric beams, practically without affecting the plate. To enhance its mechanical behavior the internal stiffening beams were prestressed and the results obtained with and without prestressing were compared. This analysis was made considering the load conditions and the soil reaction module constant.

Nonlinear stability analysis of porous sandwich beam with nanocomposite face sheet on nonlinear viscoelastic foundation by using Homotopy perturbation method

  • Rostamia, Rasoul;Mohammadimehr, Mehdi
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.821-829
    • /
    • 2021
  • Nonlinear dynamic response of a sandwich beam considering porous core and nano-composite face sheet on nonlinear viscoelastic foundation with temperature-variable material properties is investigated in this research. The Hamilton's principle and beam theory are used to drive the equations of motion. The nonlinear differential equations of sandwich beam respect to time are obtained to solve nonlinear differential equations by Homotopy perturbation method (HPM). The effects of various parameters such as linear and nonlinear damping coefficient, linear and nonlinear spring constant, shear constant of Pasternak type for elastic foundation, temperature variation, volume fraction of carbon nanotube, porosity distribution and porosity coefficient on nonlinear dynamic response of sandwich beam are presented. The results of this paper could be used to analysis of dynamic modeling for a flexible structure in many industries such as automobiles, Shipbuilding, aircrafts and spacecraft with solar easured at current time step and the velocity and displacement were estimated through linear integration.

Nonlinear vibration of unsymmetrical laminated composite beam on elastic foundation

  • Pakar, I.;Bayat, M.;Cveticanin, L.
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.453-461
    • /
    • 2018
  • In this paper, nonlinear vibrations of the unsymmetrical laminated composite beam (LCB) on a nonlinear elastic foundation are studied. The governing equation of the problem is derived by using Galerkin method. Two different end conditions are considered: the simple-simple and the clamped-clamped one. The Hamiltonian Approach (HA) method is adopted and applied for solving of the equation of motion. The advantage of the suggested method is that it does not need any linearization of the problem and the obtained approximate solution has a high accuracy. The method is used for frequency calculation. The frequency of the nonlinear system is compared with the frequency of the linear system. The influence of the parameters of the foundation nonlinearity on the frequency of vibration is considered. The differential equation of vibration is solved also numerically. The analytical and numerical results are compared and is concluded that the difference is negligible. In the paper the new method for error estimation of the analytical solution in comparison to the exact one is developed. The method is based on comparison of the calculation energy and the exact energy of the system. For certain numerical data the accuracy of the approximate frequency of vibration is determined by applying of the suggested method of error estimation. Finally, it has been indicated that the proposed Hamiltonian Approach gives enough accurate result.

Analysis of a functionally graded nanocomposite sandwich beam considering porosity distribution on variable elastic foundation using DQM: Buckling and vibration behaviors

  • Nejadi, Mohammad Mehdi;Mohammadimehr, Mehdi
    • Computers and Concrete
    • /
    • v.25 no.3
    • /
    • pp.215-224
    • /
    • 2020
  • In the present study, according to the important of porosity in low specific weight in comparison of high stiffness of carbon nanotubes reinforced composite, buckling and free vibration analysis of sandwich composite beam in two configurations, of laminates using differential quadrature method (DQM) is studied. Also, the effects of porosity coefficient and three types of porosity distribution on critical buckling load and natural frequency are discussed. It is shown the buckling loads and natural frequencies of laminate 1 are significantly larger than the results of laminate 2. When configuration 2 (the core is made of FRC) and laminate 1 ([0/90/0/45/90]s) are used, the first natural frequency rises noticeably. It is also demonstrated that the influence of the core height in the case of lower carbon volume fractions is negligible. Even though, when volume fraction of fiber increases, the critical buckling load enhances smoothly. It should be noticed the amount of decline has inverse relationship with the beam aspect ratio. Investigating three porosity patterns, beam with the distribution of porosity Type 2 has the maximum critical buckling load and first natural frequency. Among three elastic foundations (constant, linear and parabolic), buckling load and natural frequency in linear variation has the least amount. For all kind of elastic foundations, when the porosity coefficient increases, critical buckling load and natural frequency decline significantly.

An Exact Analysis of Steel Box Girders with the Effects of Distortional Deformation of Sections (단면변형의 효과를 포함한 강상자형 거더의 엄밀한 해석)

  • 진만식;이병주;김문영
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.1
    • /
    • pp.11-20
    • /
    • 2004
  • The main goal of this study is to develop MATLAB programming for an analysis of distortional deformations and stresses of the straight box girder. For this purpose, a distortional deformation theory is firstly summarized and then a BEF (Beam on Elastic Foundation) theory is presented using analogy of the corresponding variables. Finally, with governing equations of the beam-column element on elastic foundation, an exact element stiffness matrix of the beam element and nodal forces equivalent to concentrated and distributed loads are evaluated via a generalized linear eigenvalue problem. In order to verify the efficiency and accuracy of this method, distortional stresses of box girders with multiple diaphragms are presented and compared with results by FEA.

On propagation of elastic waves in an embedded sigmoid functionally graded curved beam

  • Zhou, Linyun;Moradi, Zohre;Al-Tamimi, Haneen M.;Ali, H. Elhosiny
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.17-31
    • /
    • 2022
  • This investigation studies the characteristics of wave dispersion in sigmoid functionally graded (SFG) curved beams lying on an elastic substrate for the first time. Homogenization process was performed with the help of sigmoid function and two power laws. Moreover, various materials such as Zirconia, Alumina, Monel and Nickel steel were explored as curved beams materials. In addition, curved beams were rested on an elastic substrate which was modelled based on Winkler-Pasternak foundation. The SFG curved beams' governing equations were derived according to Euler-Bernoulli curved beam theory which is known as classic beam theory and Hamilton's principle. The resulted governing equations were solved via an analytical method. In order to validate the utilized method, the obtained outcomes were compared with other researches. Finally, the influences of various parameters, including wave number, opening angle, gradient index, Winkler coefficient and Pasternak coefficient were evaluated and indicated in the form of diagrams.

Numerical assessment of nonlocal dynamic stability of graded porous beams in thermal environment rested on elastic foundation

  • Al-Toki, Mouayed H.Z.;Ali, Hayder A.K.;Faleh, Nadhim M.;Fenjan, Raad M.
    • Geomechanics and Engineering
    • /
    • v.28 no.5
    • /
    • pp.455-461
    • /
    • 2022
  • Numerical assessment of the dynamic stability behavior of nonlocal beams rested on elastic foundation has been provided in the present research. The beam is made of fucntional graded (FG) porous material and is exposed to thermal and humid environments. It is also consiered that the beam is subjected to axial periodic mechanical load which especific exitation frequency leading to its instability behavior. Beam modeling has been performed via a two-variable theory developed for thick beams. Then, nonlocal elasticity has been used to establish the governing equation which are solved via Chebyshev-Ritz-Bolotin method. Temperature and moisture variation showed notable effects on stability boundaries of the beam. Also, the stability boundaries are affected by the amount of porosities inside the material.

Nonlinear interaction analysis of infilled frame-foundation beam-homogeneous soil system

  • Hora, M.S.
    • Coupled systems mechanics
    • /
    • v.3 no.3
    • /
    • pp.267-289
    • /
    • 2014
  • A proper physical modeling of infilled building frame-foundation beam-soil mass interaction system is needed to predict more realistic and accurate structural behavior under static vertical loading. This is achieved via finite element method considering the superstructure, foundation and soil mass as a single integral compatible structural unit. The physical modelling is achieved via use of finite element method, which requires the use of variety of isoparametric elements with different degrees of freedom. The unbounded domain of the soil mass has been discretized with coupled finite-infinite elements to achieve computational economy. The nonlinearity of soil mass plays an important role in the redistribution of forces in the superstructure. The nonlinear behaviour of the soil mass is modeled using hyperbolic model. The incremental-iterative nonlinear solution algorithm has been adopted for carrying out the nonlinear elastic interaction analysis of a two-bay two-storey infilled building frame. The frame and the infill have been considered to behave in linear elastic manner, whereas the subsoil in nonlinear elastic manner. In this paper, the computational methodology adopted for nonlinear soil-structure interaction analysis of infilled frame-foundation-soil system has been presented.