• Title/Summary/Keyword: elastic constraint

Search Result 126, Processing Time 0.02 seconds

Effect of specimen size on fracture toughness of reduced activation ferritic steel (JLF-l) (저방사화 철강재 (JLF-1)의 파괴인성에 미치는 시험편 크기의 영향)

  • Kim, Dong-Hyun;Yoon, Han-Ki;Park, Won-Jo;Katoh, Y.;Kohyama, A.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.300-305
    • /
    • 2003
  • Reduced activation ferritic (JLF-1) steel is leading candidates for blanket/first-wall structures of the D-T fusion reactor. In fusion application, structural materials will suffer effects of repeated changes of temperature. Therefore, the data base of tensile strength and fracture toughness at operated temperature $400^{\circ}C$ are very important. Fracture toughness ($J_{IC}$) and tensile tests were carried out at room temperature and elevated temperature ($400^{\circ}C$). Fracture toughness tests were performed with two type size to investigate the relationship between the constraint effect of a size and the fracture toughness resistance curve. As the results, the tensile strength and the fracture toughness values of the JLF-1 steel are slightly decreased with increasing temperature. The fracture resistance curve increased with increasing plane size and decreased with increasing thickness. The fracture toughness values of JLF-1 steel at room temperature and at $400^{\circ}C$ shows an excellent fracture toughness ($J_{IC}$) of about $530kJ/m^2\;and\;340kJ/m^2$, respectively.

  • PDF

Crack growth analysis and remaining life prediction of dissimilar metal pipe weld joint with circumferential crack under cyclic loading

  • Murthy, A. Ramachandra;Gandhi, P.;Vishnuvardhan, S.;Sudharshan, G.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2949-2957
    • /
    • 2020
  • Fatigue crack growth model has been developed for dissimilar metal weld joints of a piping component under cyclic loading, where in the crack is located at the center of the weld in the circumferential direction. The fracture parameter, Stress Intensity Factor (SIF) has been computed by using principle of superposition as KH + KM. KH is evaluated by assuming that, the complete specimen is made of the material containing the notch location. In second stage, the stress field ahead of the crack tip, accounting for the strength mismatch, the applied load and geometry has been characterized to evaluate SIF (KM). For each incremental crack depth, stress field ahead of the crack tip has been quantified by using J-integral (elastic), mismatch ratio, plastic interaction factor and stress parallel to the crack surface. The associated constants for evaluation of KM have been computed by using the quantified stress field with respect to the distance from the crack tip. Net SIF (KH + KM) computed, has been used for the crack growth analysis and remaining life prediction by Paris crack growth model. To validate the model, SIF and remaining life has been predicted for a pipe made up of (i) SA312 Type 304LN austenitic stainless steel and SA508 Gr. 3 Cl. 1. Low alloy carbon steel (ii) welded SA312 Type 304LN austenitic stainless-steel pipe. From the studies, it is observed that the model could predict the remaining life of DMWJ piping components with a maximum difference of 15% compared to experimental observations.

Axial capacity of reactive powder concrete filled steel tube columns with two load conditions

  • Wang, Qiuwei;Shi, Qingxuan;Xu, Zhaodong;He, Hanxin
    • Steel and Composite Structures
    • /
    • v.31 no.1
    • /
    • pp.13-25
    • /
    • 2019
  • Reactive powder concrete (RPC) is a type of ultra-high strength concrete that has a relatively high brittleness. However, its ductility can be improved by confinement, and the use of RPC in composite RPC filled steel tube columns has become an important subject of research in recent years. This paper aims to present an experimental study of axial capacity calculation of RPC filled circular steel tube columns. Twenty short columns under axial compression were tested and information on their failure patterns, deformation performance, confinement mechanism and load capacity were presented. The effects of load conditions, diameter-thickness ratio and compressive strength of RPC on the axial behavior were further discussed. The experimental results show that: (1) specimens display drum-shaped failure or shear failure respectively with different confinement coefficients, and the load capacity of most specimens increases after the peak load; (2) the steel tube only provides lateral confinement in the elastic-plastic stage for fully loaded specimens, while the confinement effect from steel tube initials at the set of loading for partially loaded specimens; (3) confinement increases the load capacity of specimens by 3% to 38%, and this increase is more pronounced as the confinement coefficient becomes larger; (4) the residual capacity-to-ultimate capacity ratio is larger than 0.75 for test specimens, thus identifying the composite columns have good ductility. The working mechanism and force model of the composite columns were analyzed, and based on the twin-shear unified strength theory, calculation methods of axial capacity for columns with two load conditions were established.

Strongest Simple Beams with Constant Volume (일정체적 단순지지 최강보)

  • Lee, Byoung Koo;Lee, Tae Eun;Kim, Young Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2A
    • /
    • pp.155-162
    • /
    • 2009
  • This paper deals with the strongest beams with the solid regular polygon cross-section, whose volumes are always held constant. The differential equation of the elastic deflection curve of such beam subjected to the concentrated and trapezoidal distributed loads are derived and solved numerically. The Runge-Kutta method and shooting method are used to integrate the differential equation and to determine the unknown initial boundary condition of the given beam. In the numerical examples, the simple beams are considered as the end constraint and also, the linear, parabolic and sinusoidal tapers are considered as the shape function of cross sectional depth. As the numerical results, the configurations, i.e. section ratios, of the strongest beams are determined by reading the section ratios from the numerical data related with the static behaviors, under which static maximum behaviors become to be minimum.

Level Set Based Shape Optimization of Linear Structures using Topological Derivatives (위상민감도를 이용한 선형구조물의 레벨셋 기반 형상 최적설계)

  • Yoon, Minho;Ha, Seung-Hyun;Kim, Min-Geun;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.1
    • /
    • pp.9-16
    • /
    • 2014
  • Using a level set method and topological derivatives, a topological shape optimization method that is independent of an initial design is developed for linearly elastic structures. In the level set method, the initial domain is kept fixed and its boundary is represented by an implicit moving boundary embedded in the level set function, which facilitates to handle complicated topological shape changes. The "Hamilton-Jacobi(H-J)" equation and computationally robust numerical technique of "up-wind scheme" lead the initial implicit boundary to an optimal one according to the normal velocity field while minimizing the objective function of compliance and satisfying the constraint of allowable volume. Based on the asymptotic regularization concept, the topological derivative is considered as the limit of shape derivative as the radius of hole approaches to zero. The required velocity field to update the H-J equation is determined from the descent direction of Lagrangian derived from optimality conditions. It turns out that the initial holes are not required to get the optimal result since the developed method can create holes whenever and wherever necessary using indicators obtained from the topological derivatives. It is demonstrated that the proper choice of control parameters for nucleation is crucial for efficient optimization process.

Characteristics of Engineered Soils (Engineered Soils의 특성)

  • Lee, Jong-Sub;Lee, Chang-Ho;Lee, Woo-Jin;Santamarina, J. Caries
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.129-136
    • /
    • 2006
  • Engineered mixtures, which consist of rigid sand particles and soft fine-grained rubber particles, are tested to characterize their small and large-strain responses. Engineered soils are prepared with different volumetric sand fraction, sf, to identify the transition from a rigid to a soft granular skeleton using wave propagation, $K_{o}-loading$, and triaxial testing. Deformation moduli at small, middle and large-strain do not change linearly with the volume fraction of rigid particles; instead, deformation moduli increase dramatically when the sand fraction exceeds a threshold value between sf=0.6 to 0.8 that marks the formation of a percolating network of stiff particles. The friction angle increases with the volume fraction of rigid particles. Conversely, the axial strain at peak strength increases with the content of soft particles, and no apparent peak strength is observed in specimens when sand fraction is less than 60%. The presence of soft particles alters the formation of force chains. While soft particles are not part of high-load carrying chains, they play the important role of preventing the buckling of stiff particle chains.