• Title/Summary/Keyword: elastic body

Search Result 526, Processing Time 0.097 seconds

PRACTICAL MODELLING OF STONE-COLUMN REINFORCED GROUND

  • Tan By S.A.;Tjahyono S.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.291-311
    • /
    • 2006
  • The acceleration of consolidation by stone columns was mostly analysed within the framework of a basic unit cell model (i.e. a cylindrical soil body around a column). A method of converting the axisymmetric unit cell into the equivalent plane-strain model would be required for two-dimensional numerical modelling of multi-column field applications. This paper proposes two practical simplified conversion methods to obtain the equivalent plane-strain model of the unit cell, and investigates their applicability to multi-column reinforced ground. In the first conversion method, the soil permeability is matched according to an analytical equation, whereas in the second method, the column width is matched based on the equivalence of column area. The validity of these methods is tested by comparison with the numerical results of unit-cell simulations and with the field data from an embankment case history. The results show that for the case of linear-elastic material modelling, both methods produce reasonably accurate long-term consolidation settlements, whereas for the case of elasto-plastic material modelling, the second method is preferable as the first one gives erroneously lower long-term settlements, where plastic yielding of stone column are ignored.

  • PDF

Identification of Fractional-derivative-model Parameters of Viscoelastic Materials Using an Optimization Technique (최적화 기법을 이용한 점탄성물질의 분수차 미분모델 물성계수 추정)

  • Kim, Sun-Yong;Lee, Doo-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.12 s.117
    • /
    • pp.1192-1200
    • /
    • 2006
  • Viscoelastic damping materials are widely used to reduce noise and vibration because of its low cost and easy implementation, for examples, on the body structure of passenger cars, air planes, electric appliances and ships. To design the damped structures, the material property such as elastic modulus and loss factor is essential information. The four-parameter fractional derivative model well describes the dynamic characteristics of the viscoelastic damping materials with respect to both frequency and temperature. However, the identification procedure of the four-parameter is very time-consuming one. In this study a new identification procedure of the four-parameters is proposed by using an FE model and a gradient-based numerical search algorithm. The identification procedure goes two sequential steps to make measured frequency response functions(FRF) coincident with simulated FRFs: the first one is a peak alignment step and the second one is an amplitude adjustment step. A numerical example shows that the proposed method is useful in identifying the viscoelastic material parameters of fractional derivative model.

Analytical and finite element solution of a receding contact problem

  • Adiyaman, Gokhan;Yaylaci, Murat;Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.54 no.1
    • /
    • pp.69-85
    • /
    • 2015
  • In this paper, a receding contact problem for an elastic layer resting on two quarter planes is considered. The layer is pressed by a stamp and distributed loads. It is assumed that the contact surfaces are frictionless and only compressive traction can be transmitted through the contact surfaces. In addition the effect of body forces are neglected. Firstly, the problem is solved analytically based on theory of elasticity. In this solution, the problem is reduced into a system of singular integral equations in which contact areas and contact stresses are unknowns using boundary conditions and integral transform techniques. This system is solved numerically using Gauss-Jacobi integral formulation. Secondly, two dimensional finite element analysis of the problem is carried out using ANSYS. The dimensionless quantities for the contact areas and the contact pressures are calculated under various distributed load conditions using both solutions. It is concluded that the position and the magnitude of the distributed load have an important role on the contact area and contact pressure distribution between layer and quarter plane contact surface. The analytic results are verified by comparison with finite element results.

1D finite element artificial boundary method for layered half space site response from obliquely incident earthquake

  • Zhao, Mi;Yin, Houquan;Du, Xiuli;Liu, Jingbo;Liang, Lingyu
    • Earthquakes and Structures
    • /
    • v.9 no.1
    • /
    • pp.173-194
    • /
    • 2015
  • Site response analysis is an important topic in earthquake engineering. A time-domain numerical method called as one-dimensional (1D) finite element artificial boundary method is proposed to simulate the homogeneous plane elastic wave propagation in a layered half space subjected to the obliquely incident plane body wave. In this method, an exact artificial boundary condition combining the absorbing boundary condition with the inputting boundary condition is developed to model the wave absorption and input effects of the truncated half space under layer system. The spatially two-dimensional (2D) problem consisting of the layer system with the artificial boundary condition is transformed equivalently into a 1D one along the vertical direction according to Snell's law. The resulting 1D problem is solved by the finite element method with a new explicit time integration algorithm. The 1D finite element artificial boundary method is verified by analyzing two engineering sites in time domain and by comparing with the frequency-domain transfer matrix method with fast Fourier transform.

The Kinematic Analysis of Peters Motion on Parallel bars (평행봉 피터스 동작의 운동학적 분석)

  • Yoon, Hee-Joong;Yoon, Chang-Sun;Kim, Tae-Sam
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.2
    • /
    • pp.15-26
    • /
    • 2004
  • The purpose of this study was to investigate the kinematic variables of peters motion in parallel bars. The subjects were 3 male national gymnasts. For this study, kinematic data were collected using video camera. Coordinate data were low-pass filtered using a fourth-order Butterworth with cutoff frequency of 6Hz. Each valuables analyzed was used to compare kinematic features between the subjects. The conclusions were as follows; 1. For a stable regrasp motion, the subjects appeared to increase horizontal and vertical displacement during the DS phase because it induce a vertical elastic of body and reaction of bar for the US phase. 2. For a stable hand standing motion of the regrasp, the subjects appeared to maintain the fast vertical and horizontal velocity during the DS phase, but in contrary during the US and Air phase the vertical and horizontal velocity appeared to do decrease. 3. When the arm lean angle and the trunk lean angle maintain a big angle during the DS phase, the subjects appeared to do a stable performance to release in a high position.

Study on the Gait Pattern of the Aged with Lower Limbs Orthosis

  • Kim, Kyong;Kim, Seong-Hyun;Kim, Young-Chul;Kwon, Tae-Kyu;Hong, Chul-Un;Kim, Nam-Gyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2444-2447
    • /
    • 2005
  • The purpose of this study was to analyze the gait motion of the aged with a lower limbs orthosis. The gait motion was analyzed with and without lower limbs orthosis using APAS 3D Motion Analysis System. The pattern of lower limbs motion was tracked based on four targets attached to the body of the subject. The targets were positioned at hip, knee, ankle, and foot. The parameters measured were the displacement, the velocity, and the acceleration of the four targets. The improvement in the measured values on the displacement and the velocity of the four targets were small with the orthosis due to inconvenience of wearing it, but the increase in the acceleration was large due to the elastic force of the rubber actuator. Especially, the increase of the acceleration of foot with lower limbs orthosis seems to help the gait motion of the elderly.

  • PDF

A Study on the Deflection of Rail by Bolt Tightening (볼트 체결에 의한 직선운동베어링 레일 변형에 관한 연구)

  • 김태범;이상조;김익수;이위로
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.794-797
    • /
    • 2001
  • The basic design of today s rolling linear guides with rails is outlined in a French patent from 1932, it was not until the early 1970s that linear guides were commercialized. Progress with the numerical control of machine tools led to higher speed and accuracy of machines that exposed limitations of conventional sliding guides in terms of durability and response capability. As a result, rolling guides, having better high-speed performance and greater compatibility with electronics, began to be used widely. This paper examined theoretically and experimentally the influence of rail bolt tightening on the motion accuracy of linear guides. The rail of a linear guide is tightened and fixed to the base component by bolts. Naturally, the rail is an elastic body and the compression force generated by tightening the volts causes its deflection. Compromising motion accuracy, the rail deforms wavily in a longitudinal direction corresponding to the bolt pitch. The relation between rail position and deflection(sinking) amount caused by bolt tightening was analyzed through FEM analysis in this paper.

  • PDF

Characteristics of a Miniaturized Ultrasonic Motor for Auto-focusing of a Mobile Phone

  • Lim Kee-Joe;Lee Jong-Sub;Kang Seong-Hwa
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.106-109
    • /
    • 2006
  • In this paper, the design and characteristics of a novel ultrasonic motor are investigated. Such a motor is appropriate far use in the optical zoom or auto focusing functions of the lens system in mobile phones. Its design and simulation of performances are carried out by FEM commercial software (ATILA). The shape of the motor is similar to a square without one side, on which an optical lens can be mounted. Two sheets of piezoelectric ceramics are adhered to both sides of two legs of the elastic body, respectively To drive the ultrasonic motor, the voltage is applied to two sheets of piezoelectric ceramics bonded to one leg. The rotation direction can be easily changed by switching the piezoelectric sheets bonded to the other leg, to which voltage is applied. A proto type of the motor is fabricated and its outer size is $10^*10^*2[mm3]$ including the camera lens of which the diameter is 7.5(mm). Its power consumption is about 0.3[W] and the speed of rotation is adjustable from 10 to 200[rpm] according to the applied voltage

Fabrication and Experiment of Rotary Ultrasonic Motor with Simple Structure (단순화된 구조의 회전형 초음파모터의 제작 및 실험)

  • Kim, Jong-Wook;Chong, Hyon-Ho;Jeong, Sung-Su;Park, Choong-Hyo;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.319-319
    • /
    • 2010
  • The previous cross type USM(ultrasonic motor) has the stator of cross shape composed of 8 ceramics. However, ultrasonic motor with simple structure has the stator composed of only 4 ceramics. Principle of the motor is to apply alternative voltages which have 90 phase difference to attached ceramics, and then elliptical displacement is generated at four edges of elastic body. Characteristics of the motor were simulated by FEM(finite element method). The parameters were size of the stator and thickness of the ceramics. According to FEM results, driving frequency of motor is defined at 28 [kHz]. On the contrary, driving frequency of fabricated motor is defined at 26.8 [kHz] and then, experimental results were compared with FEM results at the frequency. As a result, elliptical displacement and speed of USM increased linearly with increasing applied voltage.

  • PDF

Generating Characteristics of a Cantilever Type Piezoelectric Generator for Changeable Frequency (주파수 가변용 외팔보형 압전발전기의 발전특성)

  • Jeong, Seong-Su;Park, Choong-Hyo;Kang, Shin-Chul;Kim, Jong-Wook;Lim, Jung-Hoon;Kim, Myong-Ho;Park, Tae-Gone
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.11
    • /
    • pp.865-869
    • /
    • 2011
  • A cantilever-type piezoelectric generator has advantages of simple structure, ease of fabrication and large displacement by transverse vibration of a beam. It is easy to control the natural frequency, and also possible to increase the output power by changing the length, width, and thickness of the generator. In particular, the length increases, the natural frequency sharply decreases, and vice versa. Hence, the natural frequency can widely be controlled by using change in the length of elastic body. In this paper, the generator was designed and fabricated to change natural frequency using the slides of the case. In addition, the generating characteristics were confirmed through finite element analyses and vibration experiment. As a result, the maximum output characteristics could be generated due to resonance phenomenon although any frequency of external force was applied.