• 제목/요약/키워드: eigenvalue ratio

검색결과 120건 처리시간 0.021초

수직하중을 받는 Barrette 말뚝의 고유진동수 특성 (Natural Frequency Characteristics of Vertically Loaded Barrettes)

  • 이준규;고준영;최용혁;박구병;김재영
    • 대한토목학회논문집
    • /
    • 제41권1호
    • /
    • pp.39-48
    • /
    • 2021
  • 본 논문에서는 정적 수직하중을 받는 barrette 말뚝의 고유진동수를 산정할 수 있는 해석모델을 제안하였다. 비균질 지반에 설치된 직사각형 마찰말뚝의 자유진동을 지배하는 미분방정식을 유도하였다. 이 지배방정식을 Runge-Kutta 법을 이용하여 수치적분하였고, 미분방정식의 고유치인 고유진동수는 Regula-Falsi 법을 이용하여 산정하였다. 말뚝의 고유진동수는 유한요소해석의 결과와 잘 일치하였다. 말뚝의 고유진동수를 증가시키는 말뚝변수는 단면형상비, 마찰저항비, 지반강성비이고, 감소시키는 말뚝변수는 마찰형상비, 세장비, 압축계수이다.

최소평균절대값삼승 (LMAT) 적응 알고리즘: Part II. 알고리즘의 성능 평가 (Least mean absolute third (LMAT) adaptive algorithm:part II. performance evaluation of the algorithm)

  • 김상덕;김성수;조성호
    • 한국통신학회논문지
    • /
    • 제22권10호
    • /
    • pp.2310-2316
    • /
    • 1997
  • 본 논문에서는 고차통계에 의한 적응알고리즘 가운데 오차의 평균절대값삼승 (LMAT)을 최소화하는 알고리즘과 이미 널리 사용되고 있는 경쟁 알고리즘의 성능을 서로 비교 평가하였다. 사용된 입력선호가 Gaussian 분포를 갖는다는 가정하에, LMAT 알고리즘의 정상상태 추청오차에 대한 평균자승특성 근사식을 유도하였다. 유도된 근사식은 컴퓨터 모의실험을 통하여 그 타당성을 검증하였다. LMAT 알고리즘 및 경쟁 알고리즘들이 정상상태에서 같은 값의 평균자승추정오차를 갖는 경우에 대하여 각 알고리즘의 수렴속도를 비교하였고, LMAT 알고리즘의 우수한 수렴 성능을 알 수 있었다 특히, 입력신호의 eigenvalue spread ratio 및 measurement noise power 등 환경이 변화함에도 불구하고 LMAT 알고리즘이 여전히 나은 특성을 보임을 알 수 있었다.

  • PDF

Numerical investigation of buckling strength of longitudinally stiffened web of plate girders subjected to bending

  • Kim, Hee Soon;Park, Yong Myung;Kim, Byung Jun;Kim, Kyungsik
    • Structural Engineering and Mechanics
    • /
    • 제65권2호
    • /
    • pp.141-154
    • /
    • 2018
  • In this study, the bend-buckling strength of the web in longitudinally stiffened plate girder was numerically investigated. The buckling strength of the reinforced web was evaluated through an eigenvalue analysis of the hypothetical model, in which the top and bottom junctions of the web to the flanges were assumed as simple support conditions. Major parameters in the analysis include asymmetrical cross-sectional property, aspect ratio of the web, stiffener locations, and bending rigidity of the stiffeners. The numerical results showed that current AASHTO LRFD specifications (2014) provides the buckling strength from considerably safe side to slightly unsafe side depending on the location of the stiffeners. A modified equation for buckling coefficients was proposed to solve the shortcomings. The bending rigidity requirements of longitudinal stiffeners stipulated in AASHTO were also investigated. It is desirable to increase the rigidity of the stiffeners when the aspect ratio is less than 1.0.

Numerical buckling temperature prediction of graded sandwich panel using higher order shear deformation theory under variable temperature loading

  • Sahoo, Brundaban;Sahoo, Bamadev;Sharma, Nitin;Mehar, Kulmani;Panda, Subrata Kumar
    • Smart Structures and Systems
    • /
    • 제26권5호
    • /
    • pp.641-656
    • /
    • 2020
  • The finite element solutions of thermal buckling load values of the graded sandwich curved shell structure are reported in this research using a higher-order kinematic model including the shear deformation effect. The numerical buckling temperature has been computed using an in-house specialized code (MATLAB environment) prepared in the framework of the current mathematical formulation. In addition, the mathematical model includes the excess structural distortion under the influence of elevated environment via Green-Lagrange nonlinear strain. The corresponding eigenvalue equation has been solved to predict the critical buckling temperature of the graded sandwich structure. The numerical stability and the accuracy of the current solution have been confirmed by comparing with the available published results. Thereafter, the model is extended to bring out the influences of structural parameters i.e. the curvature ratio, core-face thickness ratio, support conditions, power-law indices and sandwich types on the thermal buckling behavior of graded sandwich curved shell panels.

Free vibration analysis of angle-ply laminated composite and soft core sandwich plates

  • Sahla, Meriem;Saidi, Hayat;Draiche, Kada;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제33권5호
    • /
    • pp.663-679
    • /
    • 2019
  • In this work, a simple four-variable trigonometric shear deformation model with undetermined integral terms to consider the influences of transverse shear deformation is applied for the dynamic analysis of anti-symmetric laminated composite and soft core sandwich plates. Unlike the existing higher order theories, the current one contains only four unknowns. The equations of motion are obtained using the principle of virtual work. The analytical solution is determined by solving the eigenvalue problem. The influences of geometric ratio, modular ratio and fibre angle are critically evaluated for different problems of laminated composite and sandwich plates. The eigenfrequencies obtained using the current theory are verified by comparing the results with those of other theories and with the exact elasticity solution, if any.

Vibration of bio-inspired laminated composite beams under varying axial loads

  • Tharwat Osman;Salwa A. Mohamed;Mohamed A. Eltaher;Mashhour A. Alazwari;Nazira Mohamed
    • Steel and Composite Structures
    • /
    • 제50권1호
    • /
    • pp.25-43
    • /
    • 2024
  • In this article, a mathematical model is developed to predict the dynamic behavior of bio-inspired composite beam with helicoidal orientation scheme under variable axial load using a unified higher order shear deformation beam theory. The geometrical kinematic relations of displacements are portrayed with higher parabolic shear deformation beam theory. Constitutive equation of composite beam is proposed based on plane stress problem. The variable axial load is distributed through the axial direction by constant, linear, and parabolic functions. The equations of motion and associated boundary conditions are derived in detail by Hamilton's principle. Using the differential quadrature method (DQM), the governing equations, which are integro-differential equations are discretized in spatial direction, then they are transformed into linear eigenvalue problems. The proposed model is verified with previous works available in literatures. Parametric analyses are developed to present the influence of axial load type, orthotropic ratio, slenderness ratio, lamination scheme, and boundary conditions on the natural frequencies of composite beam structures. The present enhanced model can be used especially in designing spacecrafts, naval, automotive, helicopter, the wind turbine, musical instruments, and civil structures subjected to the variable axial loads.

Critical buckling coefficient for simply supported tapered steel web plates

  • Saad A. Yehia;Bassam Tayeh;Ramy I. Shahin
    • Structural Engineering and Mechanics
    • /
    • 제90권3호
    • /
    • pp.273-285
    • /
    • 2024
  • Tapered girders emerged as an economical remedy for the challenges associated with constructing long-span buildings. From an economic standpoint, these systems offer significant advantages, such as wide spans, quick assembly, and convenient access to utilities between the beam's shallow sections and the ceiling below. Elastic-local buckling is among the various failure modes that structural designers must account for during the design process. Despite decades of study, there remains a demand for efficient and comprehensive procedures to streamline product design. One of the most pressing requirements is a better understanding of the tapered web plate girder's local buckling behavior. This paper conducts a comprehensive numerical analysis to estimate the critical buckling coefficient for simply supported tapered steel web plates, considering loading conditions involving compression and bending stresses. An eigenvalue analysis was carried out to determine the natural frequencies and corresponding mode shapes of tapered web plates with varying geometric parameters. Additionally, the study highlights the relative significance of various parameters affecting the local buckling phenomenon, including the tapering ratio of the panel, normalized plate length, and ratio of minimum to maximum compressive stresses. The regression analysis and optimization techniques were performed using MATLAB software for the results of the finite element models to propose a separate formula for each load case and a unified formula covering different compression and bending cases of the elastic local buckling coefficient. The results indicate that the proposed formulas are applicable for estimating the critical buckling coefficient for simply supported tapered steel web plates.

MUSIC 스펙트럼을 이용한 잡음환경에서의 목표 신호 구간 검출 (Target signal detection using MUSIC spectrum in noise environments)

  • 박상준;정상배
    • 말소리와 음성과학
    • /
    • 제4권3호
    • /
    • pp.103-110
    • /
    • 2012
  • In this paper, a target signal detection method using multiple signal classification (MUSIC) algorithm is proposed. The MUSIC algorithm is a subspace-based direction of arrival (DOA) estimation method. Using the inverse of the eigenvalue-weighted eigen spectra, the algorithm detects the DOAs of multiple sources. To apply the algorithm in target signal detection for GSC-based beamforming, we utilize its spectral response for the DOA of the target source in noisy conditions. The performance of the proposed target signal detection method is compared with those of the normalized cross-correlation (NCC), the fixed beamforming, and the power ratio method. Experimental results show that the proposed algorithm significantly outperforms the conventional ones in receiver operating characteristics (ROC) curves.

집중질량과 초기 비틀림각을 갖는 회전블레이드의 진동해석 (Vibration analysis of a pretwisted rotating blade with a concentrated mass)

  • 곽주영;유홍희
    • 대한기계학회논문집A
    • /
    • 제22권1호
    • /
    • pp.190-197
    • /
    • 1998
  • Equations of motions of a pretwisted rotating blade with a concentrated mass in an arbitrary position are derived. The flapwise and chordwise equations are coupled to each other due to the pretwist angle of the blade. As the angular speed, hub radius ratio, pretwist angle and concentrated mass vary, the vibration characteristics of the blade change. It is found that eigenvalue lociveering phenomena occur between two closing loci due to the pretwist angle. The effect of the pretwist angle on the critical angular speed and location of the concentrated mass on the natural frequencies are also investigated.

Pseudospectral 해석법을 이용한 직사각 Reissner-Mindlin 평판의 동적 해석 (Application of Pseudospectral Method to the Dynamic Analysis of Rectangular Reissner-Mindlin Plate)

  • 승용호;이진희
    • 대한기계학회논문집A
    • /
    • 제24권6호
    • /
    • pp.1419-1426
    • /
    • 2000
  • A dynamic analysis of rectangular Reissner-Mindlin plate was carried out using pseudospectral method. The pseudospectral method is superior to the finite element method because of more rapid conver gence speed of approximate solutions. Especially, the improvement in accuracy of the pseudospectral method is remarkable. Numerical examples demonstrate the excellent performance and robustness of the pseudospectral method with respect to thickness ratio of rectangular Reissner-Mindlin plate. The natural frequencies of rectangular Reissner-Mindlin plate calculated with the pseudospectral method are more reliable than those calculated with other numerical methods.