Browse > Article
http://dx.doi.org/10.12989/scs.2019.33.5.663

Free vibration analysis of angle-ply laminated composite and soft core sandwich plates  

Sahla, Meriem (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Saidi, Hayat (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Draiche, Kada (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Bousahla, Abdelmoumen Anis (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Bourada, Fouad (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Tounsi, Abdelouahed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Publication Information
Steel and Composite Structures / v.33, no.5, 2019 , pp. 663-679 More about this Journal
Abstract
In this work, a simple four-variable trigonometric shear deformation model with undetermined integral terms to consider the influences of transverse shear deformation is applied for the dynamic analysis of anti-symmetric laminated composite and soft core sandwich plates. Unlike the existing higher order theories, the current one contains only four unknowns. The equations of motion are obtained using the principle of virtual work. The analytical solution is determined by solving the eigenvalue problem. The influences of geometric ratio, modular ratio and fibre angle are critically evaluated for different problems of laminated composite and sandwich plates. The eigenfrequencies obtained using the current theory are verified by comparing the results with those of other theories and with the exact elasticity solution, if any.
Keywords
shear deformation; antisymmetric; laminated; sandwich; natural frequencies;
Citations & Related Records
Times Cited By KSCI : 24  (Citation Analysis)
연도 인용수 순위
1 Thai, H.T. and Kim, S.E. (2010), "Free vibration of laminated composite plates using two variable refined plate theory", Int. J. Mech. Sci., 52, 626-633. https://doi.org/10.1016/j.ijmecsci.2010.01.002   DOI
2 Whitney, J.M. (1969), "The effect of transverse shear deformation on the bending of laminated plates", J. Compos. Mater., 3, 534- 547. https://doi.org/10.1177/002199836900300316   DOI
3 Yan, P.C., Norris, C.H. and Stavsky, Y. (1966), "Elastic wave propagation in heterogeneous plates", Int. J. Solids Struct., 2, 665-684. https://doi.org/10.1016/0020-7683(66)90045-X   DOI
4 Avcar, M. (2015), "Effects of rotary inertia shear deformation and non-homogeneity on frequencies of beam", Struct. Eng. Mech., Int. J., 55(4), 871-884. https://doi.org/10.12989/sem.2015.55.4.871   DOI
5 Avcar, M. (2016), "Effects of material non-homogeneity and two parameter elastic foundation on fundamental frequency parameters of Timoshenko beams", Acta Physica Polonica A, 130(1), 375-378. https://doi.org/10.12693/APhysPolA.130.375.   DOI
6 Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., Int. J., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603
7 Baltacioglu, A.K. and Civalek, O. (2018), "Numerical approaches for vibration response of annular and circular composite plates", Steel Compos. Struct., Int. J., 29(6), 755-766. https://doi.org/10.12989/scs.2018.29.6.759.
8 Benferhat, R., Hassaine Daouadji, T., Hadji, L. and Said Mansour, M. (2016), "Static analysis of the FGM plate with porosities", Steel Compos. Struct., Int. J., 21(1), 123-136. https://doi.org/10.12989/scs.2016.21.1.123   DOI
9 Belkacem, A., Tahar, H.D., Abderrezak, R., Amine, B.M., Mohamed, Z. and Boussad, A. (2018) "Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions", Struct. Eng. Mech., Int. J., 66(6), 761-769. https://doi.org/10.12989/sem.2018.66.6.761
10 Belmahi, S., Zidour, M., Meradjah, M., Bensattalah, T. and Dihaj, A. (2018), "Analysis of boundary conditions effects on vibration of nanobeam in a polymeric matrix", Struct. Eng. Mech., Int. J., 67(5), 517-525. https://doi.org/10.12989/sem.2018.67.5.517
11 Bensattalah, T., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2018), "Critical buckling loads of carbon nanotube embedded in Kerr's medium", Adv. Nano Res., Int. J., 6(4), 339-356. https://doi.org/10.12989/anr.2018.6.4.339
12 Bert, C.W. and Chen, T.L.C. (1978), "Effect of shear deformation on vibration of antisymmetric angle ply laminated rectangular plates", Int. J. Solids Struct., 14, 465-473. https://doi.org/10.1016/0020-7683(78)90011-2   DOI
13 Brischetto, S. (2014), "An exact 3d solution for free vibrations of multilayered cross-ply composite and sandwich plates and shells", Int. J. Appl. Mech., 6, 1-42. https://doi.org/10.1142/S1758825114500768   DOI
14 Carrera, E. (1999), "A study of transverse normal stress effect on vibration of multilayered plates and shells", J. Sound Vib., 225, 803-829. https://doi.org/10.1006/jsvi.1999.2271   DOI
15 Afsharmanesh, B., Ghaheri, A. and Taheri-Behrooz, F. (2014), "Buckling and vibration of laminated composite circular plate on Winkler-type foundation", Steel Compos. Struct., Int. J., 17(1), 1-19. https://doi.org/10.12989/scs.2014.17.1.001   DOI
16 Chakrabarti, A. and Sheikh, A.H. (2004), "Vibration of laminate-faced sandwich plate by a new refined element", ASCE J. Aerosp. Eng., 17, 123-134. https://doi.org/10.1061/(ASCE)08931321(2004)17:3(123)   DOI
17 Chalak, H.D., Chakrabarti, A., Iqbal, M. and Sheikh, A.H. (2013), "Free vibration analysis of laminated soft core sandwich plates", J. Vib. Acoust., 135, 1-15. https://doi.org/10.1115/1.4007262
18 Chandra Mouli, B., Ramji, K., Kar, V.R., Panda, S.K., Lalepalli, A.K. and Pandey, H.K. (2018), "Numerical study of temperature dependent eigenfrequency responses of tilted functionally graded shallow shell structures", Struct. Eng. Mech., Int. J., 68(5), 527-536. https://doi.org/10.12989/sem.2018.68.5.527
19 Chemi, A., Zidour, M., Heireche, H., Rakrak, K. and Bousahla, A.A. (2018), "Critical buckling load of chiral double-walled carbon nanotubes embedded in an elastic medium", Mech. Compos. Mater., 53(6), 827-836. https://doi.org/10.1007/s11029-018-9708-x   DOI
20 Aagaah, M.R., Mahinfalah, M. and Jazar, G.N. (2006), "Natural frequencies of laminated composite plates using third order shear deformation theory", Compos. Struct., 72, 273-279. https://doi.org/10.1016/j.compstruct.2004.11.012   DOI
21 Eltaher, M.A., Khairy, A., Sadoun, A.M. and Omar, F.A. (2014), "Static and buckling analysis of functionally graded Timoshenko nanobeams", Appl. Math. Computat., 229, 283-229. https://doi.org/10.1016/j.amc.2013.12.072   DOI
22 Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., Int. J., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289   DOI
23 Draiche, K., Tounsi, A. and Mahmoud, S.R. (2016), "A refined theory with stretching effect for the flexure analysis of laminated composite plates", Geomech. Eng., Int. J., 11(5), 671-690. https://doi.org/10.12989/gae.2016.11.5.671   DOI
24 Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S., Tounsi, A. and Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, Int. J., 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369
25 Fadoun, O.O., Borokinni, A.S., Layeni, O.P. and Akinola, A.P. (2017), "Dynamics analysis of a transversely isotropic nonclassical thin plate", Wind Struct., Int. J., 25(1), 25-38. https://doi.org/10.12989/was.2017.25.1.025
26 Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007   DOI
27 Akbas, S.D. (2016), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., Int. J., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125   DOI
28 Akbas, S.D. (2018), "Thermal post-buckling analysis of a laminated composite beam", Struct. Eng. Mech., Int. J., 67(4), 337-346. https://doi.org/10.12989/sem.2018.67.4.337
29 Ashour, A.S. (2003), "Buckling and vibration of symmetric laminated composite plates with edges elastically restrained", Steel Compos. Struct., Int. J., 3(6), 439-450. https://doi.org/10.12989/scs.2003.3.6.439   DOI
30 Ghugal, Y.M. and Pawar, M.D. (2011), "Buckling and vibration of plates by hyperbolic shear deformation theory", J. Aerosp. Eng. Technol., 1, 1-12.
31 Hadji, L., Hassaine Daouadji, T. and Adda Bedia, E.A. (2016), "Dynamic behavior of FGM beam using a new first shear deformation theory", Earthq. Struct., Int. J., 10(2), 451-461. https://doi.org/10.12989/eas.2016.10.2.451   DOI
32 Javed, S., Viswanathan, K.K., Izyan, M.N., Aziz, Z.A. and Lee, J.H. (2018), "Free vibration of cross-ply laminated plates based on higher-order shear deformation theory", Steel Compos. Struct., Int. J., 26(4), 473-484. https://doi.org/10.12989/scs.2018.26.4.473
33 Kant, T. and Manjunatha, BS. (1988), "An un-symmetric FRC laminate C3 finite element model with 12 degrees of freedom per node", Eng. Comput., 5, 300-308. https://doi.org/10.1108/eb023749   DOI
34 Kar, V.R. and Panda, S.K. (2015b), "Free vibration responses of temperature dependent functionally graded curved panels under thermal environment", Latin Am. J. Solids Struct., 12(11), 2006-2024. http://dx.doi.org/10.1590/1679-78251691   DOI
35 Kant, T. and Swaminathan, K. (2001a), "Analytical solution for free vibration analysis of laminated composite and sandwich plates based on a higher order refined theory", Compos. Struct., 53, 73-85. https://doi.org/10.1016/S0263-8223(00)00180-X   DOI
36 Kant, T. and Swaminathan, K. (2001b), "Free vibration of isotropic, orthotropic, and multilayer plates based on higher order refined theories", J. Sound Vib., 241, 319-327. https://doi.org/10.1006/jsvi.2000.3232   DOI
37 Kar, V.R. and Panda, S.K. (2015a), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., Int. J., 18(3), 693-709. https://doi.org/10.12989/scs.2015.18.3.693   DOI
38 Kar, V.R. and Panda, S.K. (2016), "Nonlinear thermomechanical deformation behaviour of P-FGM shallow spherical shell panel", Chinese J. Aeronaut., 29(1), 173-183. https://doi.org/10.1016/j.cja.2015.12.007   DOI
39 Kar, V.R. and Panda, S.K. (2017), "Large-amplitude vibration of functionally graded doubly-curved panels under heat conduction", AIAA J., 55(12), 4376-4386. https://doi.org/10.2514/1.J055878   DOI
40 Karama, M., Afaq, K.S. and Mistou, S. (2009), "A new theory for laminated composite plates", Proc. IMechE, Part L: J Materials: Design and Applications, 223, 53-62. https://doi.org/10.1243/14644207JMDA189
41 Karami, B. and Karami, S. (2019), "Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials", Adv. Nano Res., Int. J., 7(1), 51-61. https://doi.org/10.12989/anr.2019.7.1.051   DOI
42 Liu, Q. and Zhao, Y. (2007), "Effect of soft honeycomb core on flexural vibration of sandwich panel using low order and high order shear deformation models", J. Sandw. Struct. Mater., 9, 95-108. https://doi.org/10.1177/1099636207070588   DOI
43 Kolahchi, R. (2017), "A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods", Aerosp. Sci. Technol., 66, 235-248. https://doi.org/10.1016/j.ast.2017.03.016   DOI
44 Kulkarni, S.D. and Kapuria, S. (2008), "Free vibration analysis of composite and sandwich plates using an improved discrete Kirchhoff quadrilateral element based on third order zigzag theory", Comput. Mech., 42, 803-824. https://doi.org/10.1007/s00466-008-0285-z   DOI
45 Kumar, P. and Srinivas, J. (2018), "Transient vibration analysis of FG-MWCNT reinforced composite plate resting on foundation", Steel Compos. Struct., Int. J., 29(5), 569-578. https://doi.org/10.12989/scs.2018.29.5.569
46 Matsunaga, H. (2001), "Vibration and stability of angle ply laminated composite plates subjected to in-plane stresses", Int. J. Mech. Sci., 43, 1925-1944. https://doi.org/10.1016/S0020-7403(01)00002-9   DOI
47 Mehar, K., Panda, S.K., Dehengia, A. and Kar, V.R. (2016), "Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment", J. Sandw. Struct. Mater., 18(2), 151-173. https://doi.org/10.1177/1099636215613324   DOI
48 Mindlin, R.D. (1951), "Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., 18(1), 31-38.   DOI
49 Naserian-Nik, A.M. and Tahani, M. (2010), "Free vibration analysis of moderately thick rectangular laminated composite plates with arbitrary boundary conditions", Struct. Eng. Mech., Int. J., 35(2), 217-240. https://doi.org/10.12989/sem.2010.35.2.217   DOI
50 Noor, A.K. and Burton, W.S. (1989), "Free vibration of multilayered composite plates", Compos. Struct., 11, 183-204. https://doi.org/10.2514/3.6868   DOI
51 Noor, A.K. and Burton, W.S. (1990), "Three-dimensional solutions for anti-symmetrically laminated anisotropic plates", ASME J. Appl. Mech., 57, 182-188. https://doi.org/10.1115/1.2888300   DOI
52 Pandya, B.N. and Kant, T. (1988), "Finite element stress analysis of laminated composite plates using higher-order displacement model", Compos. Sci. Technol., 32, 137-155. https://doi.org/10.1016/0266-3538(88)90003-6   DOI
53 Panjehpour, M., Loh, E. and Deepak, T.J. (2018), "Structural Insulated Panels: State-of-the-Art", Trends Civil Eng. Architect., 3(1), 336-340. https://doi.org/10.32474/TCEIA.2018.03.000151
54 Rao, M.K. and Desai, Y.M. (2004), "Analytical solutions for vibrations of laminated and sandwich plates using mixed theory", Compos. Struct., 63, 361-373. https://doi.org/10.1016/S0263-8223(03)00185-5   DOI
55 Rao, M.K., Scherbatiuk, K., Desai, Y.M. and Shah, A.H. (2004), "Natural vibrations of laminated and sandwich plates", ASCE J. Eng. Mech., 130, 1268-1278. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:11(1268)   DOI
56 Reddy, J.N. (1979), "Free vibration of antisymmetric angle ply laminated plates including transverse shear deformation by the finite element method", J. Sound Vib., 4, 565-576. https://doi.org/10.1016/0022-460X(79)90700-4   DOI
57 Reddy, J.N. (1984), "A simple higher order theory for laminated composite plates", ASME J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719   DOI
58 Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech., Trans ASME, 12(2), 69-77. https://doi.org/10.1016/0020-7683(76)90001-9
59 Sahouane, A., Hadji, L. and Bourada, M. (2019), " Numerical analysis for free vibration of functionally graded beams using an original HSDBT", Earthq. Struct., Int. J., 17(1), 31-37. https://doi.org/10.12989/eas.2019.17.1.031
60 Safa, A., Hadji, L., Bourada, M. and Zouatnia, N. (2019), "Thermal vibration analysis of FGM beams using an efficient shear deformation beam theory", Earthq. Struct., Int. J., 17(3), 329-336. https://doi.org/10.12989/eas.2019.17.4.329
61 Sayyad, A.S. and Ghugal, Y.M. (2015), "On the free vibration analysis of laminated composite and sandwich plates: A review of recent literature with some numerical results", Compos. Struct., 129, 177-201. https://doi.org/10.1016/j.compstruct.2015.04.007   DOI
62 Sayyad, A.S. and Ghugal, Y.M. (2017), "On the free vibration of angle-ply laminated composite and soft core sandwich plates", J. Sandw. Struct. Mater., 19(6), 679-711. https://doi.org/10.1177/1099636216639000   DOI
63 Selmi, A. and Bisharat, A. (2018), "Free vibration of functionally graded SWNT reinforced aluminum alloy beam", J. Vibroeng., 20(5), 2151-2164. https://doi.org/10.21595/jve.2018.19445   DOI
64 Senthilnathan, N.R., Lim, S.P., Lee, K.H. and Chow, S.T. (1988), "Vibration of laminated orthotropic plates using a simplified higher order deformation theory", Compos. Struct., 10, 211-229. https://doi.org/10.1016/0263-8223(88)90020-7   DOI
65 Shahadat, M.R.B., Alam, M.F., Mandal, M.N.A. and Ali, M.M. (2018), "Thermal transportation behaviour prediction of defective graphene sheet at various temperature: A Molecular Dynamics Study", Am. J. Nanomater., 6(1), 34-40. https://doi.org/10.12691/ajn-6-1-4
66 Soldatos, K.P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mech., 94, 195-200. https://doi.org/10.1007/bf01176650   DOI