• Title/Summary/Keyword: eigenvalue problem.

Search Result 549, Processing Time 0.023 seconds

Adjoint Design Sensitivity Analysis of Damped Systems (보조변수법을 이용한 감쇠계 고유치 설계민감도 해석)

  • Yoo, Jung-Hoon;Lee, Tae-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.398-401
    • /
    • 2001
  • There are two methods to calculate design sensitivity such as direct differentiation method and adjoint method. A sort of direct differentiation method for design sensitivity analysis costs too much when number of design variables is much larger than the number of response functions whose design sensitivity analyses are required. Therefore, an adjoint method is suggested for the case that the dimension of design variables is lager than the number of response function. An adjoint method is required to compute adjoint variables from the simultaneous linear system equation, the so-called adjoint equation, requiring only the eigenvalue and its associated eigenvectors for mode being differentiated. This method has been extended to the repeated eigenvalue problem. In this paper, we propose an adjoint method for deign sensitivity analysis of damped vibratory systems with distinct eigenvalues.

  • PDF

Two-dimensional Unsteady Thermal Stresses in a partially heated infinite FGM Plate (부분 가열된 무한 경사기능재료 판의 2차원 비정상 열응력)

  • Kim, Kui-Seob
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.2
    • /
    • pp.9-17
    • /
    • 2007
  • A Green's function approach based on the laminate theory is adopted for solving the two-dimensional unsteady temperature field and the associated thermal stresses in an infinite plate made of functionally graded material (FGM). All material properties are assumed to depend only on the coordinate x (perpendicular to the surface). The unsteady heat conduction equation is formulated into an eigenvalue problem by making use of the eigenfunction expansion theory and the laminate theory. The eigenvalues and the corresponding eigenfunctions obtained by solving an eigenvalue problem for each layer constitute the Green's function solution for analyzing the two-dimensional unsteady temperature. The associated thermoelastic field is analyzed by making use of the thermal stress function. Numerical analysis for a FGM plate is carried out and effects of material properties on unsteady thermoelastic behaviors are discussed.

  • PDF

On the dynamics of rotating, tapered, visco-elastic beams with a heavy tip mass

  • Zeren, Serkan;Gurgoze, Metin
    • Structural Engineering and Mechanics
    • /
    • v.45 no.1
    • /
    • pp.69-93
    • /
    • 2013
  • The present study deals with the dynamics of the flapwise (out-of-plane) vibrations of a rotating, internally damped (Kelvin-Voigt model) tapered Bernoulli-Euler beam carrying a heavy tip mass. The centroid of the tip mass is offset from the free end of the beam and is located along its extended axis. The equation of motion and the corresponding boundary conditions are derived via the Hamilton's Principle, leading to a differential eigenvalue problem. Afterwards, this eigenvalue problem is solved by using Frobenius Method of solution in power series. The resulting characteristic equation is then solved numerically. The numerical results are tabulated for a variety of nondimensional rotational speed, tip mass, tip mass offset, mass moment of inertia, internal damping parameter, hub radius and taper ratio. These are compared with the results of a conventional finite element modeling as well, and excellent agreement is obtained.

Linear instability or buckling problems for mechanical and coupled thermomechanical extreme conditions

  • Ibrahimbegovic, Adnan;Hajdo, Emina;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • v.2 no.4
    • /
    • pp.349-374
    • /
    • 2013
  • In this work we propose a novel procedure for direct computation of buckling loads for extreme mechanical or thermomechanical conditions. The procedure efficiency is built upon the von Karmann strain measure providing the special format of the tangent stiffness matrix, leading to a general linear eigenvalue problem for critical load multiplier estimates. The proposal is illustrated on a number of validation examples, along with more complex examples of interest for practical applications. The comparison is also made against a more complex computational procedure based upon the finite strain elasticity, as well as against a more refined model using the frame elements. All these results confirm a very satisfying performance of the proposed methodology.

The Equilibrium Solution and the Stability Analysis of Reynolds Stress Equations for a Homogeneous Turbulent Shear Flow (난류 균일전단유동에 대한 레이놀즈 응력 모형방정식의 평형해와 안정성 해석)

  • 이원근;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.820-833
    • /
    • 1995
  • An analysis is performed to examine the equilibrium state and the stability of modeled Reynolds stress equations for homogeneous turbulent shear flows. The system of the governing equations consists of four coupled ordinary differential equations. The equilibrium states are found by the steady state solution of the governing equations. In order to investigate the stability of the system about its state in equilibrium, and eigenvalue problem is constructed. As a result, constraints for the coeffieients in the model equations are obtained by the stability condition of the equilibrium state as well as by their physically realizable bounds. It is observed that the models with pressure-strain rate correlation that are linear in the anisotropy tensor are stable and produce reasonable equilibrium tensor do not behave properly. Stability considerations about three most commonly used models are given in detail in the final section.

Analytical solution of a two-dimensional thermoelastic problem subjected to laser pulse

  • Abbas, Ibrahim A.;Alzahrani, Faris S.
    • Steel and Composite Structures
    • /
    • v.21 no.4
    • /
    • pp.791-803
    • /
    • 2016
  • In this article, the problem of a two-dimensional thermoelastic half-space are studied using mathematical methods under the purview of the generalized thermoelastic theory with one relaxation time is studied. The surface of the half-space is taken to be thermally insulated and traction free. Accordingly, the variations of physical quantities due to by laser pulse given by the heat input. The nonhomogeneous governing equations have been written in the form of a vector-matrix differential equation, which is then solved by the eigenvalue approach. The analytical solutions are obtained for the temperature, the components of displacement and stresses. The resulting quantities are depicted graphically for different values of thermal relaxation time. The result provides a motivation to investigate the effect of the thermal relaxation time on the physical quantities.

Study of two dimensional visco-elastic problems in generalized thermoelastic medium with heat source

  • Baksi, Arup;Roy, Bidyut Kumar;Bera, Rasajit Kumar
    • Structural Engineering and Mechanics
    • /
    • v.29 no.6
    • /
    • pp.673-687
    • /
    • 2008
  • In this paper, a thermo-viscoelastic problem in an infinite isotropic medium in two dimensions in the presence of a point heat source is considered. The fundamental equations of the problems of generalized thermoelasticity including heat sources in a thermo-viscoelastic media have been derived in the form of a vector matrix differential equation in the Laplace-Fourier transform domain for a two dimensional problem. These equations have been solved by the eigenvalue approach. The results have been compared to those available in the existing literature. The graphs have been drawn for different cases.

Eigenvalue problem petaining to the rigorous three-dimensional vector coupled-wave analysis of diffraction from surface-relief gratings (표면양각회절격자에 대한 엄밀한 3차원벡터 결합파해석의 고유값문제)

  • 조두진
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.439-444
    • /
    • 1994
  • When diffraction by arbitrary two-dimensional surface-relief dielectric gratings is analyzed using the rigorous three-dimensional vector coupled-wave analysis, it is found that the matrix eigenvalue problem pertaining to the analysis can always be simplified to that for a matrix which has the dimension of a quarter of the original, so that computing time and memory requirements for computer may be greatly reduced. However this kind of simplification can not be obtained in the case of volume diffraction gratings. tings.

  • PDF

EXISTENCE OF A POSITIVE SOLUTION FOR THE SYSTEM OF THE NONLINEAR BIHARMONIC EQUATIONS

  • Choi, Q-Heung;Jung, Tacksun
    • Korean Journal of Mathematics
    • /
    • v.15 no.1
    • /
    • pp.51-57
    • /
    • 2007
  • We prove the existence of a positive solution for the system of the following nonlinear biharmonic equations with Dirichlet boundary condition $$\{{\Delta}^2u+c{\Delta}u+av^+=s_1{\phi}_1+{\epsilon}_1h_1(x)\;in\;{\Omega},\\{\Delta}^2v+c{\Delta}v+bu^+=s_2{\phi}_1+{\epsilon}_2h_2(x)\;in\;{\Omega},$$ where $u^+= max\{u,0\}$, $c{\in}R$, $s{\in}R$, ${\Delta}^2$ denotes the biharmonic operator and ${\phi}_1$ is the positive eigenfunction of the eigenvalue problem $-{\Delta}$ with Dirichlet boundary condition. Here ${\epsilon}_1$, ${\epsilon}_2$ are small numbers and $h_1(x)$, $h_2(x)$ are bounded.

  • PDF

EIGENVALUE PROBLEMS FOR SYSTEMS OF NONLINEAR HIGHER ORDER BOUNDARY VALUE PROBLEMS

  • Rao, A. Kameswara;Rao, S. Nageswara
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.711-721
    • /
    • 2010
  • Values of the parameter $\lambda$ are determined for which there exist positive solutions of the system of boundary value problems, $u^{(n)}+{\lambda}p(t)f(\upsilon)=0$, $\upsilon^{(n)}+{\lambda}q(t)g(u)=0$, for $t\;{\in}\;[a,b]$, and satisfying, $u^{(i)}(a)=0$, $u^{(\alpha)}(b)=0$, $\upsilon^{(i)}(a)=0$, $\upsilon^{(\alpha)}(b)=0$, for $0\;{\leq}\;i\;{\leq}\;n-2$ and $1\;{\leq}\;\alpha\;\leq\;n-1$ (but fixed). A well-known Guo-Krasnosel'skii fixed point theorem is applied.