• Title/Summary/Keyword: eigenvalue problem.

Search Result 549, Processing Time 0.031 seconds

LOWER ORDER EIGENVALUES FOR THE BI-DRIFTING LAPLACIAN ON THE GAUSSIAN SHRINKING SOLITON

  • Zeng, Lingzhong
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1471-1484
    • /
    • 2020
  • It may very well be difficult to prove an eigenvalue inequality of Payne-Pólya-Weinberger type for the bi-drifting Laplacian on the bounded domain of the general complete metric measure spaces. Even though we suppose that the differential operator is bi-harmonic on the standard Euclidean sphere, this problem still remains open. However, under certain condition, a general inequality for the eigenvalues of bi-drifting Laplacian is established in this paper, which enables us to prove an eigenvalue inequality of Ashbaugh-Cheng-Ichikawa-Mametsuka type (which is also called an eigenvalue inequality of Payne-Pólya-Weinberger type) for the eigenvalues with lower order of bi-drifting Laplacian on the Gaussian shrinking soliton.

Generalized aspects of Riccati equation focused on the roles of its solution in control problem

  • Dong, Tian;Michio, Ohta
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.20-23
    • /
    • 1994
  • It is well known that the Boyd's theorem states the relation between the imaginary eigenvalues of discriminant H of Riccati equation (A, R, Q) and the singular value of transfer function, but it is only available for R .geq. 0 and Q .geq. 0. In this paper, we extend Boyd's theorem for two case, that is, R is symmetric, Q is sign definite, and R is sign definite, Q is symmetric. We give under the condition that there is a real symmetric solution of Riccati equation the relation between H has imaginary eigenvalue and the maximum eigenvalue of transfer functoin. Finally, we give a necessary and sufficient condition to determine whether H has imaginary eigenvalue under some conditions.

  • PDF

Out-of-plane elastic buckling of truss beams

  • Fedoroff, Alexis;Kouhia, Reijo
    • Structural Engineering and Mechanics
    • /
    • v.45 no.5
    • /
    • pp.613-629
    • /
    • 2013
  • In this article we will present a method to directly evaluate the critical point of a non-linear system by using the solution of a polynomial eigenvalue approximation as a starting point for an iterative non-linear system solver. This method will be used to evaluate out-of-plane buckling properties of truss structures for which the lateral displacement of the upper chord has been prevented. The aim is to assess for a number of example structures whether or not the linearized eigenvalue solution gives a relevant starting point for an iterative non-linear system solver in order to find the minimum positive critical load.

A Study on Stress Singularities for V-notched Cracks in Pseudo-isotropic and Anisotropic Dissimilar Materials (유사등방성과 이방성 이종재료 내의 V-노치 균열에 대한 응력특이성에 관한 연구)

  • Cho, Sang-Bong;Kim, Jin-Kwang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.152-163
    • /
    • 1999
  • The problem of eigenvalue and eigenvector for v-notched cracks in pseudo-isotropic and anisotropic dissimilar materials was obtained to discuss stress singularities from traction free boundary and perfect bonded interface conditions assuming like the form of complex stress function for v-notched cracks in an isotropic material. Eigenvalues were solved by a commercial numerical program, MATHEMATICA. The relation between wedged angle and material property for eigenvalue, ${\lambda}$ indicating stress singularities of v-notched cracks in pseudo-isotropic and anisotropic dissimilar materials was examined.

  • PDF

Eigenvalue and Frequency Response Analyses of a Hard Disk Drive Actuator Using Reduced Finite Element Models (축소된 유한요소모델을 이용한 하드디스크 구동부의 고유치 및 주파수응답 해석)

  • Han, Jeong-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.541-549
    • /
    • 2007
  • In the case of control for mechanical systems, it is highly useful to be able to provide a compact model of the mechanical system to control engineers using the smallest number of state variables, while still providing an accurate model. The reduced mechanical model can then be inserted into the complete system models and used for extended system-level dynamic simulation. In this paper, moment-matching based model order reductions (MOR) using Krylov subspaces, which reduce the number of degrees of freedom of an original finite element model via the Arnoldi process, are presented to study the eigenvalue and frequency response problems of a HDD actuator and suspension system.

Development of Parallel Eigenvalue Solution Algorithm with Substructuring Techniques (부구조기법을 이용한 병렬 고유치해석 알고리즘 개발)

  • 김재홍;성창원;박효선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.411-420
    • /
    • 1999
  • The computational model and a new eigenvalue solution algorithm for large-scale structures is presented in the form of parallel computation. The computational loads and data storages required during the solution process are drastically reduced by evenly distributing computational loads to each processor. As the parallel computational model, multiple personal computers are connected by 10Mbits per second Ethernet card. In this study substructuring techniques and static condensation method are adopted for modeling a large-scale structure. To reduce the size of an eigenvalue problem the interface degrees of freedom and one lateral degree of freedom are selected as the master degrees of freedom in each substructure. The performance of the proposed parallel algorithm is demonstrated by applying the algorithm to dynamic analysis of two-dimensional structures.

  • PDF

On the Variational Approach for Analyzing the Stability of Solutions of Evolution Equations

  • Abdel-Gawad, Hamdy I.;Osman, M.S.
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.4
    • /
    • pp.661-680
    • /
    • 2013
  • The eigenvalue problems arise in the analysis of stability of traveling waves or rest state solutions are currently dealt with, using the Evans function method. In the literature, it had been shown that, use of this method is not straightforward even in very simple examples. Here an extended "variational" method to solve the eigenvalue problem for the higher order dierential equations is suggested. The extended method is matched to the well known variational iteration method. The criteria for validity of the eigenfunctions and eigenvalues obtained is presented. Attention is focused to find eigenvalue and eigenfunction solutions of the Kuramoto-Slivashinsky and (K[p,q]) equation.

New Formulation of MNDIF Method for Accurate Eigenvalue Analysis of Concave Acoustic Cavities (오목 음향 공동의 고정밀도 고유치 해석을 위한 새로운 MNDIF법 정식 개발)

  • Kang, S.W.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.11
    • /
    • pp.1003-1011
    • /
    • 2013
  • A new formulation of the MNDIF method is introduced to extract highly accurate eigenvalues of concave acoustic cavities. Since the MNDIF method, which was introduced by the author, can be applicable for only convex acoustic cavities, a new approach of dividing a concave cavity into two convex domains and formulating an algebraic eigenvalue problem is proposed in the paper. A system matrix equation, which gives eigenvalues, is obtained from boundary conditions for each domain and the condition of continuity in the interface between the two domains. The validity and accuracy of the proposed method are shown through example studies.

An Analysis of Eigenvalues and Eigenvectors for V-notched Cracks in Pseudo-isotropic Dissimilar Materials (유사등방성 이종재료 내의 V-노치 균열에 대한 고유치와 고유벡터 해석)

  • Kim, Jin-Gwang;Jo, Sang-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.129-139
    • /
    • 2000
  • The problem of eigenvalue and eigenvector is obtained from a V-notched crack in pseudo-isotropic dissimilar materials by the traction free boundary and the perfect bonded interface conditions. The complex stress function is assumed as the two-term William's type. The eigenvalue is solved by a commercial numerical program, MATHEMATICA to discuss stress singularities for V-notched cracks in pseudo-isotropic dissimilar materials. The RWCIM(Reciprocal Work Contour Integral Method) is applied to the determination to eigenvector coefficients associated with eigenvalues. The RWCIM algorithm is also coded by the MATHEMATICA.

  • PDF

Efficient Meshless Method for Accurate Eigenvalue Analysis of Clamped Plates (고정단 평판의 고정밀도 고유치 해석을 위한 효율적인 무요소법 개발)

  • Kang, S. W.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.10
    • /
    • pp.653-659
    • /
    • 2015
  • A new formulation of the non-dimensional dynamic influence function method, which is a type of the meshless method, is introduced to extract highly accurate eigenvalues of clamped plates with arbitrary shape. Originally, the final system matrix equation of the method, which was introduced by the author in 1999, does not have a form of algebraic eigenvalue problem unlike FEM. As the result, the non-dimensional dynamic influence function method requires an inefficient process to extract eigenvalues. To overcome this weak point, a new approach for clamped plates is proposed in the paper and the validity and accuracy is shown in verification examples.