• 제목/요약/키워드: eigenvalue problem of the matrix

검색결과 124건 처리시간 0.026초

회전속도 의존 매개변수를 가진 회전체-베어링계의 동적 해석 (Dynamic analysis of spin speed dependent parameter rotor-bearing systems)

  • 홍성욱;이종원
    • 대한기계학회논문집
    • /
    • 제12권5호
    • /
    • pp.976-983
    • /
    • 1988
  • 본 연구에서는 회전체 베어링계에 대한 불균형 응답 계산시 회전속도 의존성 을 손쉽게 고려할 수 있는 방법에 대해 논하고자 한다. 그 방법은 람다행렬(lamda matrix)을 도입하여, 회전속도 의존성을 지닌 고유치 문제를 회전속도 의존성이 없는 문제로 변환시킨 후 기존의 모우드 해석기법을 적용하여 불균형 응답특성을 알아내는 방법이다. 이때 베어링의 회전속도 의존성을 다항식(polynomial)으로 근사화할 수 있다는 기본 가정을 두었는데, 이러한 가정은 실제 베어링이 관심있는 회전수 영역에서 고차의 다항식으로 충분히 정확하게 근사화 될 수 있으므로 응용성을 크게 약화시키지 는 않는다. 특별히 회전속도 의존성이 자이로 효과(gyroscopic effect)에 의해서만 기인할 때는 여기서 제시하는 방법은 전혀 오차를 주지 않게 된다.

SKEW-SYMMETRIC SOLVENT FOR SOLVING A POLYNOMIAL EIGENVALUE PROBLEM

  • Han, Yin-Huan;Kim, Hyun-Min
    • 충청수학회지
    • /
    • 제26권2호
    • /
    • pp.275-285
    • /
    • 2013
  • In this paper a nonlinear matrix equation is considered which has the form $$P(X)=A_0X^m+A_1X^{m-1}+{\cdots}+A_{m-1}X+A_m=0$$ where X is an $n{\times}n$ unknown real matrix and $A_m$, $A_{m-1}$, ${\cdots}$, $A_0$ are $n{\times}n$ matrices with real elements. Newtons method is applied to find the skew-symmetric solvent of the matrix polynomial P(X). We also suggest an algorithm which converges the skew-symmetric solvent even if the Fr$\acute{e}$echet derivative of P(X) is singular.

Exact dynamic stiffness matrix for a thin-walled beam-column of doubly asymmetric cross-section

  • Shirmohammadzade, A.;Rafezy, B.;Howson, W.P.
    • Structural Engineering and Mechanics
    • /
    • 제38권2호
    • /
    • pp.195-210
    • /
    • 2011
  • Bernoulli-Euler beam theory is used to develop an exact dynamic stiffness matrix for the flexural-torsional coupled motion of a three-dimensional, axially loaded, thin-walled beam of doubly asymmetric cross-section. This is achieved through solution of the differential equations governing the motion of the beam including warping stiffness. The uniform distribution of mass in the member is also accounted for exactly, thus necessitating the solution of a transcendental eigenvalue problem. This is accomplished using the Wittrick-Williams algorithm. Finally, examples are given to confirm the accuracy of the theory presented, together with an assessment of the effects of axial load and loading eccentricity.

유전자 알고리즘을 이용한 구조물 손상 탐색기법에 관한 연구 (A Study for Structural Damage Identification Method Using Genetic Algorithm)

  • 우호길;최병민
    • 한국소음진동공학회논문집
    • /
    • 제17권1호
    • /
    • pp.80-87
    • /
    • 2007
  • In this paper, a method for identifying the location and extent of a damage in a structure using residual forces was presented. Element stiffness matrix reduction parameters in a finite element model were used to describe the damaged structure mathematically. The element stiffness matrix reduction parameters were determined by minimizing a global error derived from dynamic residual vectors, which were obtained by introducing a simulated experimental data into the eigenvalue problem. Genetic algorithm was used to get the solution set of element stiffness reduction parameters. The proposed scheme was verified using Euler-Bernoulli beam. The results were presented in the form of tables and charts.

A PROJECTION ALGORITHM FOR SYMMETRIC EIGENVALUE PROBLEMS

  • PARK, PIL SEONG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제3권2호
    • /
    • pp.5-16
    • /
    • 1999
  • We introduce a new projector for accelerating convergence of a symmetric eigenvalue problem Ax = x, and devise a power/Lanczos hybrid algorithm. Acceleration can be achieved by removing the hard-to-annihilate nonsolution eigencomponents corresponding to the widespread eigenvalues with modulus close to 1, by estimating them accurately using the Lanczos method. However, the additional Lanczos results can be obtained without expensive matrix-vector multiplications but a very small amount of extra work, by utilizing simple power-Lanczos interconversion algorithms suggested. Numerical experiments are given at the end.

  • PDF

AN ASYNCHRONOUS PARALLEL SOLVER FOR SOME MATRIX PROBLEMS

  • Park, Pil-Seong
    • Journal of applied mathematics & informatics
    • /
    • 제7권3호
    • /
    • pp.1045-1058
    • /
    • 2000
  • In usual synchronous parallel computing, workload balance is a crucial factor to reduce idle times of some processors that have finished their jobs earlier than others. However, it is difficult to achieve on a heterogeneous workstation clusters where the available computing power of each processor is unpredictable. As a way to overcome such a problem, the idea of asynchronous methods has grown out and is being increasingly used and studied, but there is none for eigenvalue problems yet. In this paper, we suggest a new asynchronous method to solve some singular matrix problems, that can also be used for finding a certain eigenvector of some matrices.

Adaptive Eigenvalue Decomposition Approach to Blind Channel Identification

  • Byun, Eul-Chool;Ahn, Kyung-Seung;Baik, Heung-Ki
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(1)
    • /
    • pp.317-320
    • /
    • 2001
  • Blind adaptive channel identification of communication channels is a problem of important current theoretical and practical concerns. Recently proposed solutions for this problem exploit the diversity induced by antenna array or time oversampling leading to the so-called, second order statistics techniques. And adaptive blind channel identification techniques based on a off-line least-squares approach have been proposed. In this paper, a new approach is proposed that is based on eigenvalue decomposition. And the eigenvector corresponding to the minimum eigenvalue of the covariance matrix of the received signals contains the channel impulse response. And we present a adaptive algorithm to solve this problem. The performance of the proposed technique is evaluated over real measured channel and is compared to existing algorithms.

  • PDF

단순지지 경계조건을 가진 임의 형상 평판의 효율적인 고유진동수 추출을 위한 NDIF법의 대수 고유치 문제로의 정식화 (A Formulation of NDIF Method to the Algebraic Eigenvalue Problem for Efficiently Extracting Natural Frequencies of Arbitrarily Shaped Plates with the Simply Supported Boundary Condition)

  • 강상욱;김진곤
    • 한국소음진동공학회논문집
    • /
    • 제19권6호
    • /
    • pp.607-613
    • /
    • 2009
  • A new formulation of NDIF method to the algebraic eigenvalue problem is introduced to efficiently extract natural frequencies of arbitrarily shaped plates with the simply supported boundary condition. NDIF method, which was developed by the authors for the free vibration analysis of arbitrarily shaped membranes and plates, has the feature that it yields highly accurate natural frequencies compared with other analytical methods or numerical methods(FEM and BEM). However, NDIF method has the weak point that it needs the inefficient procedure of searching natural frequencies by plotting the values of the determinant of a system matrix in the frequency range of interest. A new formulation of NDIF method developed in the paper doesn't require the above inefficient procedure and natural frequencies can be efficiently obtained by solving the typical algebraic eigenvalue problem. Finally, the validity of the proposed method is shown in several case studies, which indicate that natural frequencies by the proposed method are very accurate compared to other exact, analytical, or numerical methods.

Study of two dimensional visco-elastic problems in generalized thermoelastic medium with heat source

  • Baksi, Arup;Roy, Bidyut Kumar;Bera, Rasajit Kumar
    • Structural Engineering and Mechanics
    • /
    • 제29권6호
    • /
    • pp.673-687
    • /
    • 2008
  • In this paper, a thermo-viscoelastic problem in an infinite isotropic medium in two dimensions in the presence of a point heat source is considered. The fundamental equations of the problems of generalized thermoelasticity including heat sources in a thermo-viscoelastic media have been derived in the form of a vector matrix differential equation in the Laplace-Fourier transform domain for a two dimensional problem. These equations have been solved by the eigenvalue approach. The results have been compared to those available in the existing literature. The graphs have been drawn for different cases.

표면양각회절격자에 대한 엄밀한 3차원벡터 결합파해석의 고유값문제 (Eigenvalue problem petaining to the rigorous three-dimensional vector coupled-wave analysis of diffraction from surface-relief gratings)

  • 조두진
    • 한국광학회지
    • /
    • 제5권4호
    • /
    • pp.439-444
    • /
    • 1994
  • 임의의 2차원 표면양각 유전회절격자에 의한 일반적인 회절현상을 엄밀한 3차원벡터 결합파해석으로 다루는데 있어서 핵심적인 역학을 하는 행렬의 고유값문제가 항상 1/4 크기의 행렬에 대한 것으로 단순화되어, 컴퓨터의 계산시간과 기억용량의 요구를 현저히 줄일 수 있다는 것을 보였다. 한편, 체적형 회절격자에 있어서는 이와 같이 단순화할 수 없음을 논의하였다.

  • PDF