• Title/Summary/Keyword: efficient routing

Search Result 1,061, Processing Time 0.026 seconds

Efficient Implementations of a Delay-Constrained Least-Cost Multicast Algorithm

  • Feng, Gang;Makki, Kia;Pissinou, Niki
    • Journal of Communications and Networks
    • /
    • v.4 no.3
    • /
    • pp.246-255
    • /
    • 2002
  • Constrained minimum Steiner tree (CMST) problem is a key issue in multicast routing with quality of service (QoS) support. Bounded shortest path algorithm (BSMA) has been recognized as one of the best algorithms for the CMST problem due to its excellent cost performance. This algorithm starts with a minimumdelay tree, and then iteratively uses a -shortest-path (KSP) algorithm to search for a better path to replace a “superedge” in the existing tree, and consequently reduces the cost of the tree. The major drawback of BSMA is its high time complexity because of the use of the KSP algorithm. For this reason, we investigate in this paper the possibility of more efficient implementations of BSMA by using different methods to locate the target path for replacing a superedge. Our experimental results indicate that our methods can significantly reduce the time complexity of BSMA without deteriorating the cost performance.

Efficient Flooding in Link-State Routing Protocols (링크상태 라우팅 프로토콜의 효율적인 플러딩)

  • Park, Moosung;Rhee, Seung-Hyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.5
    • /
    • pp.326-328
    • /
    • 2014
  • In this paper we propose an efficient algorithm for LSA(Link State Advertisements) flooding. Link state routing protocols have been widely adopted in wired networks. When link state change occurs, a LSA is flooded into the whole network. The overhead of LSA flooding may be a big problem in wireless networks because their link states can be changed frequently. We propose an efficient flooding method that optimizes the flooding processes in wireless networks.

A Grid-based Efficient Routing Protocol for a Mobile Sink in Wireless Sensor Networks

  • Lee, Taekkyeun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.2
    • /
    • pp.35-43
    • /
    • 2018
  • In this paper, we propose a grid-based efficient routing protocol for a mobile sink in wireless sensor networks. In the proposed protocol, the network is partitioned into grids and each grid has a grid head. For the efficient routing to a mobile sink, the proposed protocol uses a mobile sink representative node to send the data to a mobile sink and grid heads are used as a mobile sink representative node. Furthermore, the proposed protocol uses nodes in the boundary of the center grid as position storage nodes. The position storage nodes store the position of a mobile sink representative node and provide source nodes with it for data delivery. With these features, the proposed protocol can reduce a lot of overhead to update the position information and improve the delay of data delivery to a mobile sink. The proposed protocol performs better than other protocols in terms of the delay and the energy consumption per node in the performance evaluation.

A Study on Modeling and Algorithm for WDM VWP Network Design (WDM VWP 네트워크 설계 모형 및 알고리즘 연구)

  • Lee, Hee-Sang;Hong, Sung-Pil;Song, Hae-Goo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.26 no.4
    • /
    • pp.296-305
    • /
    • 2000
  • Virtual wavelength path (VWP) is the optical path when a wavelength conversion is possible in a wavelength division multiplexing (WDM) network that is transmission infrastructure for the next generation high speed backbone networks. To achieve efficient design for VWP networks, we must consider VWP routing, wavelength assignment, and wavelength conversion while satisfying many technical constraints of the WDM networks. In this study we propose an integrated model for efficient VWP design in WDM networks. We also develope a 3-phase algorithm, each of which deals with routing, wavelength assignment and route and wavelength reassignment, respectively. In our computational experiments, phase 1 algorithm can solve the problem to the optimality for medium size test networks. Phase 2 algorithm is an efficient heuristic based on a reduced layered network and can give us an effective wavelength assignment. Finally, phase 3 algorithm reconfigure VWP routing and its wavelength assignment to concentrate wavelength conversion nodes in the suggested VWP network.

  • PDF

An Energy Efficient Routing Protocol using Transmission Range and Direction for Sensor Networks (센서 네트워크에서 전송범위와 전송방향을 이용한 에너지 효율적인 라우팅 프로토콜)

  • Lee, Hyun-Jun;Lee, Young-Han;Lee, Kyung-Oh
    • The KIPS Transactions:PartC
    • /
    • v.17C no.1
    • /
    • pp.81-88
    • /
    • 2010
  • Sensors in sensor networks are operated by their embedded batteries and they can not work any more if the batteries run out. The data collected by sensors should be transferred to a sink node through the efficient routes. Many energy efficient routing algorithms were proposed. However, the previous algorithms consume more energy since they did not consider the transmission range and direction. In this paper we propose an algorithm TDRP(Transmission range and Direction Routing Protocol) that considers the transmission range and direction for the efficient data transmission. Since TDRP does not produce clusters or grids but four quadrants and send data to the nodes in one quadrant in the direction of the sink node, it has less network overhead. Furthermore since the proposed algorithm sends data to the smaller number of nodes compared to the previous algorithms, the energy efficiency is better than other algorithms in communication node fields that are located in packet transmit directions.

Density Aware Energy Efficient Clustering Protocol for Normally Distributed Sensor Networks

  • Su, Xin;Choi, Dong-Min;Moh, Sang-Man;Chung, Il-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.6
    • /
    • pp.911-923
    • /
    • 2010
  • In wireless sensor networks (WSNs), cluster based data routing protocols have the advantages of reducing energy consumption and link maintenance cost. Unfortunately, most of clustering protocols have been designed for uniformly distributed sensor networks. However, some urgent situations do not allow thousands of sensor nodes being deployed uniformly. For example, air vehicles or balloons may take the responsibility for deploying sensor nodes hence leading a normally distributed topology. In order to improve energy efficiency in such sensor networks, in this paper, we propose a new cluster formation algorithm named DAEEC (Density Aware Energy-Efficient Clustering). In this algorithm, we define two kinds of clusters: Low Density (LD) clusters and High Density (HD) clusters. They are determined by the number of nodes participated in one cluster. During the data routing period, the HD clusters help the neighbor LD clusters to forward the sensed data to the central base station. Thus, DAEEC can distribute the energy dissipation evenly among all sensor nodes by considering the deployment density to improve network lifetime and average energy savings. Moreover, because the HD clusters are densely deployed they can work in a manner of our former algorithm EEVAR (Energy Efficient Variable Area Routing Protocol) to save energy. According to the performance analysis result, DAEEC outperforms the conventional data routing schemes in terms of energy consumption and network lifetime.

Energy Efficient Routing for Satisfying Target Lifetime in Wireless Sensor Networks (무선 센서 네트워크의 목표 수명을 만족시키기 위한 에너지 효율적 라우팅)

  • Lee, Keon-Taek;Park, Sun-Ju;Kim, Hak-Jin;Han, Seung-Jae
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.6
    • /
    • pp.505-513
    • /
    • 2009
  • In some wireless sensor networks, each wireless sensor network has its own target lifetime (desired lifetime after deployment). However, satisfying the target lifetime is not a trivial problem since the nodes in wireless sensor networks often rely on batteries as their power source. In this paper, we propose an energy efficient routing algorithm that satisfies the target-lifetime requirement of a wireless sensor network. The proposed routing algorithm not only finds energy efficient paths but also optimizes the sensing rate of each sensor node. Through simulation, we compare the performance of the proposed scheme with several other existing algorithms.

A Study on the efficient AODV Routing Algorithm using Cross-Layer Design (크로스레이어 디자인을 이용한 효율적인 AODV 알고리즘에 관한 연구)

  • Nam, Ho-Seok;Lee, Tae-Hoon;Do, Jae-Hwan;Kim, Jun-Nyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11B
    • /
    • pp.981-988
    • /
    • 2008
  • In this paper, the efficient AODV routing algorithm in MANET is proposed. Because transmission channel has a high error rate and loss in MANET, the number of hops can't be regarded as an absolute network metric. After measuring FER periodically at the data link layer using cross-layer design, the scheme that every node forwards the weight of link status in the reserved field of AODV protocol is used. In order to find the efficient route, we design AODV to be able to select an optimal route that has a good channel status by evaluating the sum of weight. The proposed AODV improves throughput, routing overhead and average end-to-end delay in comparison with the generic AODV.

Framework for End-to-End Optimal Traffic Control Law Based on Overlay Mesh

  • Liu, Chunyu;Xu, Ke
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.428-437
    • /
    • 2007
  • Along with the development of network, more and more functions and services are required by users, while traditional network fails to support all of them. Although overlay is a good solution to some demands, using them in an efficient, scalable way is still a problem. This paper puts forward a framework on how to construct an efficient, scalable overlay mesh in real network. Main differences between other overlays and ours are that our overlay mesh processes some nice features including class-of-service(CoS) and traffic engineering(TE). It embeds the end-to-end optimal traffic control law which can distribute traffic in an optimal way. Then, an example is given for better understanding the framework. Particularly, besides good scalability, and failure recovery, it possesses other characteristics such as routing simplicity, self-organization, etc. In such an overlay mesh, an applicable source routing scheme called hierarchical source routing is used to transmit data packet based on UDP protocol. Finally, a guideline derived from a number of simulations is proposed on how to set various parameters in this overlay mesh, which makes the overlay more efficient.

On-Demand Power-Efficient QoS Routing Algorithm over Mobile Ad Hoc Networks (MANET에서의 온-디멘드 방식의 전력 효율적인 QoS 라우팅 알고리즘)

  • Lee, Zae-Kwun;Song, Hwang-Jun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9A
    • /
    • pp.923-930
    • /
    • 2007
  • This paper presents MAPER, a media-aware power efficient routing algorithm over mobile ad hoc networks. Generally, multimedia services need various quality of service over the network according to their characteristics and applications. But it is not easy to guarantee quality of service over mobile ad hoc networks since the resources are very limited and time-varying. Furthermore only a limited power is available at mobile nodes, which makes the problem more challenging. Now, we propose an effective routing algorithm over mobile ad hoc networks that provides the stable end-to-end quality of service with the minimum total power consumption. Finally, experimental results are provided to show the performance of the proposed algorithm.