• 제목/요약/키워드: efficient machining

검색결과 255건 처리시간 0.043초

초음파 진동을 이용한 취성재료의 가공기술에 관한 연구 (A Study on Micro Ultrasonic machining for Brittle Material Using Ultrasonic vibration)

  • 이석우;최헌종;이봉구
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 금형가공 심포지엄
    • /
    • pp.245-252
    • /
    • 2002
  • Ultrasonic machining technology has been developed over recent years for the manufacture of cost-effective and quality-assured precision parts for several industrial application such as optics, semiconductors, aerospace, and automobile. Ultrasonic machining process is an efficient and economical means of precision machining of ceramic materials. The process is non-thermal, non-chemical and non-electric md hardly creates changes to the mechanical properties of the brittle materials machined. This paper describes the characteristics of the micro-hole of $Al_2O_3$ by ultrasonic machining with tungsten carbide tool. The effects of various parameters of ultrasonic machining, including abrasives, machining force and pressure, on the material removal rate, hole quality, and tool wear presented and discussed. The ultrasonic Machining of micro-holes in ceramics has been under taken and the machining mechanism in the ultrasonic machining of ceramics based on the fracture-mechanics concept has been analyzed.

  • PDF

화학적 초음파가공을 이용한 유리의 미세가공 (Micro-machining of Glasses using Chemical-assisted Ultrasonic Machining)

  • 전성건;신용주;김병희;김헌영;전병희
    • 대한기계학회논문집A
    • /
    • 제27권12호
    • /
    • pp.2085-2091
    • /
    • 2003
  • An ultrasonic machining process has been known as efficient and economical means fer precision machining of glass or ceramic materials. However, because of its complexity, the mechanism of the machining process is still not well understood. Therefore, it is hard to optimize the process parameters effectively. The conventional ultrasonic machining which uses the abrasive slurry only, furthermore, is time-consuming and gives the relatively rough surface. In order to increase the material removal rate and improve the integrity of the machined surface, we have introduced the novel ultrasonic machining technique, Chemical-assisted UltraSonic Machining(CUSM). The desktop-style micro ultrasonic machine has been developed and the z-axis feed is controlled by the constant load control algorithm. To obtain the chemical effects, the low concentration HF(hydrofluoric acid) solution, which erodes glass, added to alumina slurry. Through various experiments and comparison with conventional results, the superiority of CUSM is verified. MRR increases over 200%, the surface roughness is improved and the machining load decreases dramatically.

미세 음향방출 감시장치 개발 - 고정도 미세입자 가공상태 감시에의 적용 - (Development of Acoustic Emission Monitoring System for Fine Machining - Application to Cutting State Monitoring in a Fine Fixed-abrasive Machining -)

  • 김화영;안중환;김성렬
    • 한국정밀공학회지
    • /
    • 제22권6호
    • /
    • pp.109-117
    • /
    • 2005
  • In case of fine machining processes, the cutting state monitoring by a skilled operator is impossible because the physical changes generated during fine machining are very weak. To realize the high efficient and precise fine machining, it is necessary to develop the sensor based monitoring system which is able to detect the fine changes of cutting state. In this paper, the fine acoustic emission monitoring system is developed to monitor the state of the fine machining process. The developed system consists of the AE sensor and the AE signal processing unit. And this has the high-sensitivity and bandwidth which can detect fine AE signal generated during fine machining process. In order to investigate the feasibility of the developed system, evaluation experiments were performed in the fine fixed-abrasive machining processes such as polishing and glass ferrule slicing. Experimental results show that the developed monitoring system possesses an excellent real-time monitoring capability at fine machining processes.

레이저 패턴 가공용 스캔 공구경로 생성 (Scan Tool-Path Generation for Laser Pattern Machining)

  • 이창호;박상철
    • 한국CDE학회논문집
    • /
    • 제16권4호
    • /
    • pp.300-304
    • /
    • 2011
  • This paper proposes an approach to generate tool-path for laser pattern machining. Considering the mechanical structure of a laser pattern machine, it is quite similar to that of a 2D milling machine. Based on the observation, one may try to utilize the tool-path generation methodologies of 2D milling for the laser pattern machining. However, it is not possible to generate tool-path without considering the technological requirements of laser pattern machining which are different from those of 2D milling. In this paper, we identify the technological requirement of laser pattern machining, and propose a proper tool-path generation methodology to satisfy the technological requirements. For the efficient generation of tool-path, this paper proposes a tool-path element computation method, which is based on the concept of a monotone chain.

절삭 가공에서의 불량 발생 비용을 고려한 가공속도 결정에 관한 연구 (Determination of Machining Speed Considering Failure Cost)

  • 박찬웅
    • 산업경영시스템학회지
    • /
    • 제33권4호
    • /
    • pp.153-158
    • /
    • 2010
  • This study presents a single machine scheduling algorithm to minimize total cost(lateness cost, earliness cost and failure cost) by controlling machining speed. Generally, production scheduling uses the information of process planning and machining speed is not changed at production scheduling. And failure cost is not consider for scheduling algorithm. Therefore, the purpose of this study is to consider the change of machining speed for efficient production scheduling. And performance criteria for algorithm considers total cost. Especially, failure cost of product by increasing machining speed is considered.

방전 가공을 이용한 미세 공구 제작과 응용 (Fabrication of Micro-tool by Micro-EDM and Its Applications)

  • 김보현;김동준;이상민;주종남
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1902-1906
    • /
    • 2003
  • Micro-milling is an efficient method for fabricating micro structures because of its high machining rate compared with other non-conventional micro machining processes. But it is not easy to make a micro milling tool with less than 50 $\mu\textrm{m}$ in diameter by conventional machining. In this study, the characteristics of a micro milling tool fabricated by wire electrical discharge machining (WEDM) were studied. The workpiece is copper and stainless steel. The effects of some machining conditions such as feed rate, depth of cut, and a shape of tool were studied. The tools with D-shape and square shape in cross section were tested for machining micro grooves and 3D structures.

  • PDF

고경도강(SKD11)의 고속가공에서 가공성 평가 및 감시 (Monitoring and machinability evaluation in high-speed machining of high hardness steel(SKD11))

  • 김전하;김경균;강영창;김정석;김기태
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.987-990
    • /
    • 2000
  • In modern manufacturing industry such as aerospace, vehicle and die/mold industry, the high hardness malarial which is remarkable in aspects of durability is effectively used. The high-speed and precision machining technology has been applied in these fields. In this study, efficient sensors in high-speed machining by observing similar tendency through comparing cutting force with AE signal, gap sensor signal and accelerometer signal are selected, and machinability of high-speed machining is experimentally evaluated. We performed a basic research for sensing system construction to monitor a machine tool and machining condition.

  • PDF

마이크로 마스크를 가진 미세입자분사가공을 위한 가공경로의 생성 (Tool Path Generation for Micro-Abrasive Jet Machining Process with Micro-Mask)

  • 김호찬;이인환;고태조
    • 한국기계가공학회지
    • /
    • 제10권6호
    • /
    • pp.95-101
    • /
    • 2011
  • Micro-abrasive jet machining(${\mu}AJM$) using mask is a fine machining technology which can carve a figure on a material. The mask should have holes exactly same as the required figure. Abrasive particles are jetted into the holes of the mask and it collide with the material. The collision break off small portion of the material. And the ${\mu}AJM$ nozzle should move all over the machining area. However, in general the carving shape is modeled as in a bitmap figure, because it often contains characters. And the mask model is also often modeled from the bitmap image. Therefore, the machining path of the ${\mu}AJM$ also efficient if it can be generated from the bitmap image. This paper suggest an algorithm which can generate ${\mu}AJM$ tool path directly from the bitmap image of the carving figure. And shows some test results and applications.

5축 CNC가공의 검증에 관한 연구 (A Study on the Verification of 5-Axis CNC Machining)

  • 김찬봉;양민양
    • 대한기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.93-100
    • /
    • 1994
  • 5-axis CNC machining is being used in the manufacturing of tire mold, screw, and turbine blade because it can produce complex workpiece more efficiently and accurately than 3-axis CNC machining does. However, it is difficult to calculate the CL data in 5-axis CNC machining. This paper describes an efficient method to modify and edit the NC code and a data structure for representation of the workpiece produced by 5-axis CNC machining. Wireframe display of tool path and shading display of workpiece are used to represent verification results. Machining errors can be evaluated quantitively using the data structure based on the workpiece data model. The methods are implemented in a program with a IBM-PC and MS-Windows.

A rule-based scheduling system for automated machining

  • Ahn, Jaekyoung
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1992년도 춘계공동학술대회 발표논문 및 초록집; 울산대학교, 울산; 01월 02일 May 1992
    • /
    • pp.249-257
    • /
    • 1992
  • An automated machining system involves concurrent use of manufacturing resources, alternative process plans, and flexible routings. High investment in the installation of automated facilities requires an efficient scheduling system that is able to allocate the resources specified for operations over a scheduling horizon. The primary emphasis of this paper is to generate schedules that accurately reflect details of the automated environment and the objectives stated for the system. In this paper, a scheduling algorithm for automated machining is presented. Using the previous simulation research for this topic, a rule-based scheduling system is constructed. An architecture for an intelligent scheduling system is proposed, and the system has a high potential to provide efficient schedules based on the task-specific knowledge for the dynamic scheduling environment

  • PDF