• Title/Summary/Keyword: effects of substrate

Search Result 2,018, Processing Time 0.028 seconds

Ferroelectric and Magnetic Properties of BiFeO3 Thin Films Deposited on SrTiO3 Substrate (SrTiO3기판 위에 증착한 BiFeO3박막의 강유전 및 자기적 특성)

  • Lee, Eun-Gu;Kim, Sun-Jae;Lee, Jae-Gab
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.6
    • /
    • pp.358-362
    • /
    • 2008
  • $BiFeO_3$ films were hetero-epitaxially grown on $SrTiO_3$ substrate with a various orientation by pulse laser deposition. $BiFeO_3$ films grown on (111) $SrTiO_3$ substrate have a rhombohedral structure, identical to that of single crystals. On the other hand, films grown on (110) or (001) $SrTiO_3$ substrate are monoclinically distorted from the rhombohedral structure due to the epitaxial constraint. The easy axis of spontaneous polarization is close to [111] for the variously oriented films. Dramatically enhanced polarization and magnetization have been found for $BiFeO_3$ thin films grown on $SrTiO_3$ substrate comparing to that of $BiFeO_3$ crystals. The results are explained in terms of an epitaxially-induced transition between cycloidal and homogeneous spin states, via magneto-electric interactions.

Effect of Substrate Temperature on Multi-component Particle Deposition and Consolidation in Flame Hydrolysis Deposition (화염가수분해 증착 공정에서 기판온도의 변화에 따른 다성분 입자의 부착 및 소결특성에 관한 연구)

  • Shin, Hyung-Soo;Baek, Jong-Gab;Choi, Man-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.428-433
    • /
    • 2000
  • The consolidation behavior of multicomponent particles prepared by the flame hydrolysis deposition process is examined to identify the effects of Si substrate temperature. To fabricate multi-component particles, a vapor-phase ternary mixture of $SiCl_4(100 cc/min),\;BCl_3(30cc/min)\;and\;POCl_3,(5cc/min)$ was fed into a coflow diffusion oxy-hydrogen flame burner. The doped silica soot bodies were deposited on silicon substrates under various deposition conditions. The surface temperature of the substrate was measured by an infrared thermometer. Changes in the chemical states of the doped silica soot bodies were examined by FT-IR(Fourier-transformed infrared spectroscopy). The deposited particles on the substrate were heated at $1300^{\circ}C$ for 3h in a furnace at a heating rate of 10K/min. Si-O-B bending peak has been found when surface temperature exceeds $720^{\circ}C$. Correspondingly, the case with substrate temperatures above loot produced good consolidation result.

  • PDF

Plasma Etching Process based on Real-time Monitoring of Radical Density and Substrate Temperature

  • Takeda, K.;Fukunaga, Y.;Tsutsumi, T.;Ishikawa, K.;Kondo, H.;Sekine, M.;Hori, M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.93-93
    • /
    • 2016
  • Large scale integrated circuits (LSIs) has been improved by the shrinkage of the circuit dimensions. The smaller chip sizes and increase in circuit density require the miniaturization of the line-width and space between metal interconnections. Therefore, an extreme precise control of the critical dimension and pattern profile is necessary to fabricate next generation nano-electronics devices. The pattern profile control of plasma etching with an accuracy of sub-nanometer must be achieved. To realize the etching process which achieves the problem, understanding of the etching mechanism and precise control of the process based on the real-time monitoring of internal plasma parameters such as etching species density, surface temperature of substrate, etc. are very important. For instance, it is known that the etched profiles of organic low dielectric (low-k) films are sensitive to the substrate temperature and density ratio of H and N atoms in the H2/N2 plasma [1]. In this study, we introduced a feedback control of actual substrate temperature and radical density ratio monitored in real time. And then the dependence of etch rates and profiles of organic films have been evaluated based on the substrate temperatures. In this study, organic low-k films were etched by a dual frequency capacitively coupled plasma employing the mixture of H2/N2 gases. A 100-MHz power was supplied to an upper electrode for plasma generation. The Si substrate was electrostatically chucked to a lower electrode biased by supplying a 2-MHz power. To investigate the effects of H and N radical on the etching profile of organic low-k films, absolute H and N atom densities were measured by vacuum ultraviolet absorption spectroscopy [2]. Moreover, using the optical fiber-type low-coherence interferometer [3], substrate temperature has been measured in real time during etching process. From the measurement results, the temperature raised rapidly just after plasma ignition and was gradually saturated. The temporal change of substrate temperature is a crucial issue to control of surface reactions of reactive species. Therefore, by the intervals of on-off of the plasma discharge, the substrate temperature was maintained within ${\pm}1.5^{\circ}C$ from the set value. As a result, the temperatures were kept within $3^{\circ}C$ during the etching process. Then, we etched organic films with line-and-space pattern using this system. The cross-sections of the organic films etched for 50 s with the substrate temperatures at $20^{\circ}C$ and $100^{\circ}C$ were observed by SEM. From the results, they were different in the sidewall profile. It suggests that the reactions on the sidewalls changed according to the substrate temperature. The precise substrate temperature control method with real-time temperature monitoring and intermittent plasma generation was suggested to contribute on realization of fine pattern etching.

  • PDF

Effect of Tween 80 on Hydrolytic Activity and Substrate Accessibility of Carbohydrolase I (CBH I) from Trichoderma viride

  • Kim, Wanjae;Gamo, Yuko;Sani, Yahaya Mohammed;Wusiman, Yimiti;Ogawa, Satoru;Karita, Shuichi;Goto, Masakazu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.5
    • /
    • pp.684-689
    • /
    • 2006
  • The present study examined the effects of Tween 80 on the attachment and hydrolytic activity of a cellulase enzyme against ball-milled cellulose (BMC), using the whole component (native CBH I) and the catalysis module (core CBH I) of carbohydrolase I purified from Trichoderma viride (Meicelase, Meiji Seika, Tokyo, Japan). The effects were evaluated as protein concentrations in the supernatant after mixing enzyme and substrate with Tween 80 at room temperature. Tween 80 decreased the adsorption of native CBH I and core CBH I onto BMC (p<0.001) and increased the amount of reducing sugars released from BMC by native CBH I (p<0.001). However, Tween 80 did not enhance the hydrolytic activity of core CBH I. Observations using SEM revealed that Tween 80 caused cellulose filter paper to swell and enhanced surface cracks and filaments caused by native CBH I but not by core CBH I. These results suggested that Tween 80 decreases enzyme adsorption to its substrate but enhances enzymatic activity.

Effects of Deposition Conditions on Properties of CuNi thin Films Fabricated by Co-Sputtering of Dual Targets (이중 타겟의 동시 스퍼터링을 이용한 CuNi 박막 제작시 증착변수가 박막의 물성에 미치는 영향)

  • Seo, Soo-Hyung;Lee, Jae-Yup;Park, Chang-Kyun;Park, Jin-Seok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.1
    • /
    • pp.11-16
    • /
    • 2001
  • CuNi alloy films are deposited by co-sputtering of dual targets (Cu and Ni, respectively). Effects of the co-sputtering conditions, such as powers applied to the targets, deposition pressures, and substrate temperatures, on the structural and electrical properties of deposited films are systematically investigated. The composition ratio of Ni/Cu is almost linearly decreased by increasing the DC power applied to the Cu target from 25.6 W to 69.7 W with the RF power applied to the Ni target unchanged(140 W). it is noted that the chamber pressure during deposition and the film thickness give rise to a change of the Ni/Cu ratio within the films deposited. The former may be due to a higher sputtering yield of Cu atom and the latter due to the re-sputtering phenomenon of Cu atoms on the surface of deposited film. The film deposited at higher pressures or at lower substrate temperatures have a smaller crystallite size, a higher electrical resistivity, and much more voids. This may be attributed to a lower surface mobility of sputtered atoms over the substrate.

  • PDF

Effects of Substrate Temperature on Structural and Electrical Properties of α-Fe2O3 Films Prepared by Ultrasonic Spray Pyrolysis (초음파분무법으로 제조한 α-Fe2O3 막의 구조적 및 전기적 특성에 미치는 기판온도 효과)

  • Ma, Tae-Young;Kim, Jeong-Gyoo
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.282-286
    • /
    • 2004
  • ${\alpha}-Fe_{2}O_{3}$ films were prepared by ultrasonic spray pyrolysis (USP) on $SiO_{2}$ coated Si wafers using iron acetylacetonate as an iron precursor. The crystallographic properties and surface morphologies of the films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. X-ray photoelectron spectroscopy (XPS) was carried out to determine the Fe oxidation states. In order to observe stability of the films to temperature, the resistance variation of the films with an ambient temperature was measured. The effects of substrate temperature on the structural and electrical properties of the ${\alpha}-Fe_{2}O_{3}$ films were studied. The films were densified from the substrate temperature of $350^{\circ}C$. The grain size of the films grown at $400^{\circ}C$ was shown to be increased abruptly comparing with that of $350^{\circ}C$. The films showed a low resistance variation between the ambient temperature of $300^{\circ}C$ and $350^{\circ}C$.

Effects of Xylose Reductase Activity on Xylitol Production in Two-Substrate Fermentation of Recombinant Saccharomyces cerevisiae

  • Lee, Woo-Jong;Kim, Myoung-Dong;Yoo, Myung-Sang;Ryu, Yeon-Woo;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.725-730
    • /
    • 2003
  • Three recombinant Saccharomyces cerevisiae strains showing different levels of xylose reductase activity were constructed to investigate the effects of xylose reductase activity and glucose feed rate on xylitol production. Conversion of xylose to xylitol is catalyzed by xylose reductase of Pichia stipitis with cofactor NAD(P)H. A two-substrate fermentation strategy has been employed where glucose is used as an energy source for NADPH regeneration and xylose as substrate for xylitol production. All recombinant S. cerevisiae strains Yielded similar specific xylitol productivity, indicating that xylitol production in the recombinant S. cerevisiae was more profoundly affected by the glucose supply and concomitant It generation of cofactor than the xylose reductase activity itself. It was confirmed in a continuous culture that the elevation of the glucose feeding level in the xylose-conversion period enhanced the xylitol productivity in the recombinant S. cerevisiae.

Alcohol Fermentation by Zymomonas mobilis Part. 1. Effects of environmental conditions on the growth kinetics of Zymomonas mobilis (Zymomonas mobilis에 의한 알코올 발효 I. 발효 환경이 생육에 미치는 영향)

  • Pack, MooYoung;Chun, Byong-ik
    • Journal of Industrial Technology
    • /
    • v.3
    • /
    • pp.33-38
    • /
    • 1983
  • The effect of various environmental conditions on the growth kinetics of Zymomonas mobilis were studied and the kinetic parameters were evaluated. The value of ${\mu}m$ was $0.45hr^{-1}$ and Ks was 0.23 g/L. Inhibition of growth at high glucose concentration was found to follow the threshold substrate inhibition. Threshold substrate concentration was 102 g/L and substrate inhibition constant was 196 g/L. The effects of yeast extract concentrations were found to follow the Monod equation. ${\mu}m$ value was $0.45hr^{-1}$ and Ks was 0.3 g/L at 20 g/L of glucose and $0.24hr^{-1}$ and 0.24 g/L respectively at 200 g/L of glucose. The optimum temperature was found to be $35^{\circ}C$ and the activation energy of growth was 7.7 Kcal/mole below $35^{\circ}C$ and -29 Kcal/mole above $35^{\circ}C$.

  • PDF

Effects of Substrate Size on the Growth of 4 Microphytobenthos Species (Achnanthes sp., Amphora sp., Navicula sp. and Nitzschia sp.) (저서미세조류 4종(Achnanthes sp., Amphora sp., Navicula sp. 그리고 Nitzschia sp.)의 성장에 영향을 미치는 부착기질 크기의 영향)

  • Kwon, Hyeong-Kyu;Yang, Han-Soeb;Yu, Yeoung-Moon;Oh, Seok-Jin
    • Journal of Environmental Science International
    • /
    • v.21 no.1
    • /
    • pp.105-111
    • /
    • 2012
  • The effects of substrate size on the growth of microphytobenthos Achnanthes sp., Amphora sp., Navicula sp. and Nitzschia sp. were examined using glass beads in order for phytoremediation in the benthic layer of coastal waters. The glass beads used in this study were 0.09~0.15 mm (G.B 1), 0.25~0.50 mm (G.B 2), 0.75~1.00 mm (G.B 3) and 1.25~1.65 mm (G.B 4). No addition of glass bead used as control. The specific growth rate and maximum cell density of four microphytobenthos species were increasing with decreasing size of glass beads. Moreover, the control experiment without added attachment substrates showed the lowest specific growth rate and maximum cell density. Therefore, the suitable attachment substrates for mass culture of microphytobenthos seems to be important in order for phytoremediation using microphytobenthos.