• Title/Summary/Keyword: effective void ratio

Search Result 104, Processing Time 0.032 seconds

Critical State of Crushable Jeju Beach Sand (파쇄성이 큰 제주해사의 한계상태 특성)

  • Lee, Moon Joo;Bae, Kyung Doo;An, Sung Mo;Lee, Woo Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2C
    • /
    • pp.133-140
    • /
    • 2010
  • A series of triaxial test was performed in order to determine critical state parameters of calcareous Jeju sand, which comprises angular shape particles with many pores in the surface. It is observed that Jeju sand mainly shows the contractive behavior during triaxial shear due to high extreme void ratios and large compressibility. The peak friction angle of Jeju sand decreases slightly with increasing mean effective stress due to the particle crushing of carbonate materials. However, the peak friction angle of Jeju sand is higher than that of other silica sands because of the more angular particle shape. The critical state friction angle of Jeju sand gradually decreases when the mean effective stress at a critical state increases. Whereas, there is not a clear influence of void ratio on the critical state friction angle. Critical state parameters of Jeju sand are similar to those of calcareous sands, but significantly larger than those of common sands.

Evaluation to the effect of ground improvement at Inchon International Airport area using the Flat Dilatometer (Dilatometer를 이용한 인천국제공항 지역의 지반개량효과 평가)

  • 김종국;김학중;전창대
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.309-316
    • /
    • 2000
  • When highly compressible, clayey soil layers lies at a limited depth and large consolidtion settlements are expected as the result of construction, precompression of soil may be used to minimize postconstruction settlement. In this study, we tried to find the possibility about the effect of ground improvement using flat dilatometer at the Inchon International Airport where preloading was installed. Field and laboratory tests were performed for soft ground before and after preloading in order to check the effectiveness of the soft ground improvement and compared with the test results of dilatometer which obtained before and after preloading at the same location Field tests such as flat dilatometer, vane, CPTu tests were performed before and after preloading and undisturbed samples are obtained to carry out laboratory tests. As comparing results, after preloading, unit weight, effective stress, undrained shear strength were increased and we can also check the decrease of consolidation late caused of decrease of void ratio. Furthermore, it is assumed that the possibility on the effect of ground improvement by using the flat dilatometer

  • PDF

The Behavior of Undrained Pore Water Pressure in Normally Consolidated and Saturated Clay(II) - Visco Elastic Analysis Model - (포화된 정규압밀 점성토에서 비배수 공극수압의 거동(II) - 점탄성 해석 모델 -)

  • 임성훈
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.4
    • /
    • pp.137-143
    • /
    • 2003
  • The initial condition of $\Delta \sigma_3 \;=\; \Delta u$ is used for analyzing the time dependent behavior of ground. This is based on the concept that the coefficient of pore water B is the unity on the condition of saturation. but some measured consolidation data in the field showed that the pore water pressure was not dissipated as time elapsed but it was maintained constant value or it's dissipation rate was slower than that of the predicted. and so the measured data of pore water pressure was not consistent with that of settlement. In this study, the rheological model for the pore water pressure behavior on undrained condition was induced and compared with the experiment data of the literature. The result showed that the suggested model was consistent well with the result of experiment, but the suggested model could not explain the effect of the decrease of void ratio according to consolidation.

Studies on the Mechanical Properties of Weathered Granitic Soil -On the Elements of Shear Strength and Hardness- (화강암질풍화토(花崗岩質風化土)의 역학적(力學的) 성질(性質)에 관(關)한 연구(硏究) -전단강도(剪斷强度)의 영향요소(影響要素)와 견밀도(堅密度)에 대(對)하여-)

  • Cho, Hi Doo
    • Journal of Korean Society of Forest Science
    • /
    • v.66 no.1
    • /
    • pp.16-36
    • /
    • 1984
  • It is very important in forestry to study the shear strength of weathered granitic soil, because the soil covers 66% of our country, and because the majority of land slides have been occured in the soil. In general, the causes of land slide can be classified both the external and internal factors. The external factors are known as vegetations, geography and climate, but internal factors are known as engineering properties originated from parent rocks and weathering. Soil engineering properties are controlled by the skeleton structure, texture, consistency, cohesion, permeability, water content, mineral components, porosity and density etc. of soils. And the effects of these internal factors on sliding down summarize as resistance, shear strength, against silding of soil mass. Shear strength basically depends upon effective stress, kinds of soils, density (void ratio), water content, the structure and arrangement of soil particles, among the properties. But these elements of shear strength work not all alone, but together. The purpose of this thesis is to clarify the characteristics of shear strength and the related elements, such as water content ($w_o$), void ratio($e_o$), dry density (${\gamma}_d$) and specific gravity ($G_s$), and the interrelationship among related elements in order to decide the dominant element chiefly influencing on shear strength in natural/undisturbed state of weathered granitic soil, in addition to the characteristics of soil hardness of weathered granitic soil and root distribution of Pinus rigida Mill and Pinus rigida ${\times}$ taeda planted in erosion-controlled lands. For the characteristics of shear strength of weathered granitic soil and the related elements of shear strength, three sites were selected from Kwangju district. The outlines of sampling sites in the district were: average specific gravity, 2.63 ~ 2.79; average natural water content, 24.3 ~ 28.3%; average dry density, $1.31{\sim}1.43g/cm^3$, average void ratio, 0.93 ~ 1.001 ; cohesion, $ 0.2{\sim}0.75kg/cm^2$ ; angle of internal friction, $29^{\circ}{\sim}45^{\circ}$ ; soil texture, SL. The shear strength of the soil in different sites was measured by a direct shear apparatus (type B; shear box size, $62.5{\times}20mm$; ${\sigma}$, $1.434kg/cm^2$; speed, 1/100mm/min.). For the related element analyses, water content was moderated through a series of drainage experiments with 4 levels of drainage period, specific gravity was measured by KS F 308, analysis of particle size distribution, by KS F 2302 and soil samples were dried at $110{\pm}5^{\circ}C$ for more than 12 hours in dry oven. Soil hardness represents physical properties, such as particle size distribution, porosity, bulk density and water content of soil, and test of the hardness by soil hardness tester is the simplest approach and totally indicative method to grasp the mechanical properties of soil. It is important to understand the mechanical properties of soil as well as the chemical in order to realize the fundamental phenomena in the growth and the distribution of tree roots. The writer intended to study the correlation between the soil hardness and the distribution of tree roots of Pinus rigida Mill. planted in 1966 and Pinus rigida ${\times}$ taeda in 199 to 1960 in the denuded forest lands with and after several erosion control works. The soil texture of the sites investigated was SL originated from weathered granitic soil. The former is situated at Py$\ddot{o}$ngchangri, Ky$\ddot{o}$m-my$\ddot{o}$n, Kogs$\ddot{o}$ng-gun, Ch$\ddot{o}$llanam-do (3.63 ha; slope, $17^{\circ}{\sim}41^{\circ}$ soil depth, thin or medium; humidity, dry or optimum; height, 5.66/3.73 ~ 7.63 m; D.B.H., 9.7/8.00 ~ 12.00 cm) and the Latter at changun-long Kwangju-shi (3.50 ha; slope, $12^{\circ}{\sim}23^{\circ}$; soil depth, thin; humidity, dry; height, 10.47/7.3 ~ 12.79 m; D.B.H., 16.94/14.3 ~ 19.4 cm).The sampling areas were 24quadrats ($10m{\times}10m$) in the former area and 12 in the latter expanding from summit to foot. Each sampling trees for hardness test and investigation of root distribution were selected by purposive selection and soil profiles of these trees were made at the downward distance of 50 cm from the trees, at each quadrat. Soil layers of the profile were separated by the distance of 10 cm from the surface (layer I, II, ... ...). Soil hardness was measured with Yamanaka soil hardness tester and indicated as indicated soil hardness at the different soil layers. The distribution of tree root number per unit area in different soil depth was investigated, and the relationship between the soil hardness and the number of tree roots was discussed. The results obtained from the experiments are summarized as follows. 1. Analyses of simple relationship between shear strength and elements of shear strength, water content ($w_o$), void ratio ($e_o$), dry density (${\gamma}_d$) and specific gravity ($G_s$). 1) Negative correlation coefficients were recognized between shear strength and water content. and shear strength and void ratio. 2) Positive correlation coefficients were recognized between shear strength and dry density. 3) The correlation coefficients between shear strength and specific gravity were not significant. 2. Analyses of partial and multiple correlation coefficients between shear strength and the related elements: 1) From the analyses of the partial correlation coefficients among water content ($x_1$), void ratio ($x_2$), and dry density ($x_3$), the direct effect of the water content on shear strength was the highest, and effect on shear strength was in order of void ratio and dry density. Similar trend was recognized from the results of multiple correlation coefficient analyses. 2) Multiple linear regression equations derived from two independent variables, water content ($x_1$ and dry density ($x_2$) were found to be ineffective in estimating shear strength ($\hat{Y}$). However, the simple linear regression equations with an independent variable, water content (x) were highly efficient to estimate shear strength ($\hat{Y}$) with relatively high fitness. 3. A relationship between soil hardness and the distribution of root number: 1) The soil hardness increased proportionally to the soil depth. Negative correlation coefficients were recognized between indicated soil hardness and the number of tree roots in both plantations. 2) The majority of tree roots of Pinus rigida Mill and Pinus rigida ${\times}$ taeda planted in erosion-controlled lands distributed at 20 cm deep from the surface. 3) Simple linear regression equations were derived from indicated hardness (x) and the number of tree roots (Y) to estimate root numbers in both plantations.

  • PDF

Analysis of Fluid-elastic Instability In the CE-type Steam Generator Tube (CE형 증기발생기 전열관에 대한 유체탄성 불안정성 해석)

  • 박치용;유기완
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.4
    • /
    • pp.261-271
    • /
    • 2002
  • The fluid-elastic instability analysis of the U-tube bundle inside the steam generator is very important not only for detailed design stage of the SG but also for the change of operating condition of the nuclear powerplant. However the calculation procedure for the fluid-elastic instability was so complicated that the consolidated computer program has not been developed until now. In this study, the numerical calculation procedure and the computer program to obtain the stability ratio were developed. The thermal-hydraulic data in the region of secondary side of steam generator was obtained from executing the ATHOS3 code. The distribution of the fluid density can be calculated by using the void fraction, enthalpy, and operating pressure. The effective mass distribution along the U-tube was required to calculate natural frequency and dynamic mode shape using the ANSYS ver. 5.6 code. Finally, stability ratios for selected tubes of the CE type steam generator were computed. We considered the YGN 3.4 nuclear powerplant as the model plant, and stability ratios were investigated at the flow exit region of the U-tube. From our results, stability ratios at the central and the outside region of the tube bundle are much higher than those of other region.

Assessment of Consolidation Properties Using Modified Oedometer for Radial Drainage Condition (개량형 수평배수 압밀시험 장치에 의한 압밀특성 평가)

  • Jeon, Jesung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.7
    • /
    • pp.143-150
    • /
    • 2009
  • Material functions about effective stress, permeability, coefficient of consolidation and coefficient of volume change has important role to predict consolidation velocity and settlement of soft ground. Modified oedometer for radial drainage is adapted to find out material functions on laboratory tests. Undisturbed sample for laboratory tests were taken from construction sites of industrial complexes on southern coastal area which consists of upper dredged fill and lower original clay layer. For different drainage condition in consolidation process void ratio, effective stress, permeability, coefficient of consolidation and coefficient of volume change has been assessed with results of existing standard oedometer tests. It is worthwhile to note that consolidation material functions could be expressed as regression equation by Stark (2005), heterogeneity for permeability could be assessed from these relationships.

  • PDF

A Experimental study for obtaining material function of very soft clay (초연약 점토의 구성관계 산정에 관한 실험적 연구)

  • Lee, Song;Kang, Myung-Chan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.491-498
    • /
    • 2002
  • Dredged and reclaimed soft clays form slurry state which is very high water content and very low shear strength, experience large self-weight consolidation, nonlinear compressibility and permeability phenomenon would take place. In this case, a material functions which represent variety effective stress-void ratio-permeability relation (especially very low effective stress), are should be determined to predict nonlinear finite strain consolidation phenomenon forehand In this study, large slurry consolidometer with a 380mm diameter and a 1400mm height which is able to consolidation and permeability test, was developed to determine material function of very soft clay with a 500% initial water content clay, self-weight consolidation and low stress level consolidation (1Kpa, 3Kpa, 6Kpa, 12Kpa) was conducted and after each consolidation step permeability test also conducted. after final consolidation step, a constant rate of strain consolidation was conducted with undisturbed sample obtained from the large consolidometer. On the above result, material function was determined and laboratory test was modelled to evaluate its validity, numerical analysis on th field was compared to other method.

  • PDF

Effect of Foaming Agent on the Continuous Voids in Lightweight Cellular Concrete (경량기포콘크리트의 연속공극 형성에 미치는 기포제의 영향)

  • 이승한
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.742-749
    • /
    • 2002
  • This study was performed to clarify the formation procedure of continuous voids in cellular concrete, and to examine the effect of a foaming agent on the manufacture of cellular concrete with continuous voids. By the experiments, it was determined that cellular concrete to be formed with continuous voids is influenced by temperature, viscosity and flowability of cement paste, and stability of air voids, and is formed in accordance with cohesion of air voids. It was also found that separate voids are formed at an added amount of air voids corresponding to 2 % or less of the amount of cement, whereas an antifoaming phenomenon occurs when the added amount of air voids exceeds 9 % of the amount of cement. In products with respective cement fineness of 3,000, 6,000, and 8,000㎠/g, a higher compressive strength was exhibited at a higher cement fineness. The continuous void ratio depending on a variation in fineness was 38 %, 52 %, and 22 % in those products, respectively. That is, a highest continuous void ratio was exhibited at a cement fineness of 6,000㎠/g. When the water-cement ratio was reduced from 45% to 25%, the compressive strength of the cellular concrete was increased from 15 kgf/㎠ to 20 kgf/㎠ Thus, the reduction in water-cement ratio was effective in achieving an increase in strength without any variation in the specific gravity of the cellular concrete.

Development of an Effective Defect Classification System for Inspection of QFN Semiconductor Packages (QFN 반도체 패키지의 외형 결함 검사를 위한 효과적인 결함 분류 시스템 개발)

  • Kim, Hyo-Jun;Lee, Jung-Seob;Joo, Hyo-Nam;Kim, Joon-Seek
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.2
    • /
    • pp.120-126
    • /
    • 2009
  • There are many different types of surface defects on semiconductor Integrated Chips (IC's) caused by various factors during manufacturing process, such as cracks, foreign materials, chip-outs, chips, and voids. These defects must be detected and classified by an inspection system for productivity improvement and effective process control. Among defects, in particular, foreign materials and chips are the most difficult ones to classify accurately. A vision system composed of a carefully designed optical system and a processing algorithm is proposed to detect and classify the defects on QFN(Quad Flat No-leads) packages. The processing algorithm uses features derived from the defect's position and brightness value in the Maximum Likelihood classifier and the optical system is designed to effectively extract the features used in the classifier. In experiments we confirm that this method gives more effective result in classifying foreign materials and chips.

  • PDF

Distorted Bounding Surface of Clay with Consideration of the Effect of Temperature on Shearing Response (전단시 온도 영향을 고려한 점성토의 왜곡 경계면 모델 개발)

  • Woo, Sang Inn;Yune, Chan-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.117-124
    • /
    • 2020
  • The present research focuses on a methodology to describe shearing response of clay with respect to temperature. An increase of temperature shifts the normal consolidation line to move down in the plane of void ratio and mean effective stress. The critical state line, however, does not move as much as the normal consolidation line in accordance with temperature increase. As temperature increase, therefore, the difference between the critical state mean effective stress and the pre-consolidation pressure reduces. To reflect this easily, the present study applies a bounding surface consisting of two parts divided by the critical state mean effective stress. This study calibrated a bounding surface for the soft Bangkok clay and performed elemental simulation for undrained triaxial compression tests. The elemental simulation showed that the model can describe the mechanical response upon temperature of clay without complex hardening and evolution rules compared to the experimental data.