• 제목/요약/키워드: effective moment of inertia

검색결과 74건 처리시간 0.024초

Analysis on natural vibration characteristics of steel-concrete composite truss beam

  • Jiang, Lizhong;Feng, Yulin;Zhou, Wangbao;He, Binbin
    • Steel and Composite Structures
    • /
    • 제26권1호
    • /
    • pp.79-87
    • /
    • 2018
  • In order to study the natural vibration characteristics of steel-concrete composite truss beam (SCCTB), the influence of multiple factors such as interface slip, shear deformation and moment of inertia are considered. Afterwards, based on the Hamilton principle the vibration control differential equation and natural boundary conditions of SCCTB are deduced. By solving SCCTB differential equations of vibration control, an analytical calculation method is proposed for analyzing the natural vibration characteristics of SCCTB. The natural frequencies of SCCTBs with different degrees of shear connection and effective lengths are calculated by using the analytical method, and the results are compared against those obtained from ANSYS finite element numerical calculation method. The results show that the analytical method considering the influence factors such as interface slip, shear deformation and moment of inertia are in good agreement with those obtained from ANSYS finite element numerical calculation method. This evidences the correctness of the analytical method and show that the method proposed exhibits improvement over the previously developed theories for the natural vibration characteristics of SCCTB. Finally, based on the analytical method, the influence factors of SCCTB natural vibration characteristics are analyzed. The results indicate that the influence of interface slip stiffness on SCCTB's natural frequency is more than 10% and therefore cannot be neglected. Moreover, shear deformation has an effect of more than 35% on SCCTB's natural frequency and the effect cannot be ignored either in this case too.

Vibration based damage detection in a scaled reinforced concrete building by FE model updating

  • Turker, Temel;Bayraktar, Alemdar
    • Computers and Concrete
    • /
    • 제14권1호
    • /
    • pp.73-90
    • /
    • 2014
  • The traditional destructive tests in damage detection require high cost, long consuming time, repairing of damaged members, etc. In addition to these, powerful equipments with advanced technology have motivated development of global vibration based damage detection methods. These methods base on observation of the changes in the structural dynamic properties and updating finite element models. The existence, location, severity and effect on the structural behavior of the damages can be identified by using these methods. The main idea in these methods is to minimize the differences between analytical and experimental natural frequencies. In this study, an application of damage detection using model updating method was presented on a one storey reinforced concrete (RC) building model. The model was designed to be 1/2 scale of a real building. The measurements on the model were performed by using ten uni-axial seismic accelerometers which were placed to the floor level. The presented damage identification procedure mainly consists of five steps: initial finite element modeling, testing of the undamaged model, finite element model calibration, testing of the damaged model, and damage detection with model updating. The elasticity modulus was selected as variable parameter for model calibration, while the inertia moment of section was selected for model updating. The first three modes were taken into consideration. The possible damaged members were estimated by considering the change ratio in the inertia moment. It was concluded that the finite element model calibration was required for structures to later evaluations such as damage, fatigue, etc. The presented model updating based procedure was very effective and useful for RC structures in the damage identification.

항공기용 신호 송출 POD의 설계 및 개발 (Design and Development of Signal Transmitting POD for Aircraft Application)

  • 김지흥;곽용길;김기출;박주래
    • 한국항행학회논문지
    • /
    • 제24권1호
    • /
    • pp.1-8
    • /
    • 2020
  • 본 연구에서는 항공기에 장착하여 S/C대역의 신호를 장거리 표적으로 방사하기 위한 장치를 개발하였다. 장치는 요구된 실효 등방성 복사전력을 충족시키기 위해 대역별 송신기와 광대역 안테나로 RF 인터페이스를 구성하였다. 장치의 외형은 항공기 연료탱크와 동일한 포드(pod) 형상으로 설계했고, 측정된 장치의 중량은 119.8 kg, 무게중심은 1391.35 mm 그리고 관성 모멘트는 46.07 ± 0.05(Iyy) kg·㎡과 45.36 ± 0.09(Izz) kg·㎡로 모두 항공기 장착을 위한 요구도를 충족함을 확인하였다. 비행 안전을 확인하기 위해 전자기 간섭 시험(RE102, CE102), 환경시험(고온/저온 운용, 고도), 체계 내 전자기 적합성 시험 그리고 인체 전자기 복사 위해도 시험을 수행하였으며, 모든 항목의 시험 결과가 요구사항을 충족함을 확인하였다. 장치는 요구되는 전기적/기계적으로 요구되는 사항을 모두 충족함으로써 항공기 장착이 가능함을 확인하였다.

링크모션 펀치프레스의 다이나믹 발란싱 (Dynamic Balancing in a Link Motion Punch Press)

  • 서진성
    • 한국소음진동공학회논문집
    • /
    • 제17권5호
    • /
    • pp.415-426
    • /
    • 2007
  • 링크모션 펀치프레스는 많은 링크들이 서로 연결되어 있으며 각각의 링크는 고속에서 구속 운동을 수행한다. 그 결과 동적 불평형 힘과 모멘트가 프레스의 메인프레임으로 전달되며 원하지 않는 진동을 수반한다. 이로 인하여 생산성과 정확한 스탬핑 작업의 저하를 초래한다. 이 논문은 기구학 및 동역학 분석에 기초하여 링크모션 펀치프레스의 다이나믹 언발란스를 저감하는 효과적인 방법을 제시한다. 그리고 디자인 변화가 필요할 때마다 메커니즘의 모델 구성을 자동화하기 위한 디자인 변수 방식을 소개한다. 질량, 질량관성모멘트, 질량중심 등의 링크들의 관성 성질을 얻기 위하여 3차원 캐드 소프트웨어를 활용하였다. 메커니즘의 기구학적, 동역학적 거동에 주요한 영향을 미치는 일부 링크들의 디자인을 변화시킬 때 얻을 수 있는 다양한 조합에 대하여 동역학 시뮬레이션을 수행하였다.

Three dimensional analysis of reinforced concrete frames considering the cracking effect and geometric nonlinearity

  • Kara, Ilker Fatih;Dundar, Cengiz
    • Structural Engineering and Mechanics
    • /
    • 제31권2호
    • /
    • pp.163-180
    • /
    • 2009
  • In the design of tall reinforced concrete (R/C) buildings, the serviceability stiffness criteria in terms of maximum lateral displacement and inter-story drift must be satisfied to prevent large second-order P-delta effects. To accurately assess the lateral deflection and stiffness of tall R/C structures, cracked members in these structures need to be identified and their effective member flexural stiffness determined. In addition, the implementation of the geometric nonlinearity in the analysis can be significant for an accurate prediction of lateral deflection of the structure, particularly in the case of tall R/C building under lateral loading. It can therefore be important to consider the cracking effect together with the geometric nonlinearity in the analysis in order to obtain more accurate results. In the present study, a computer program based on the iterative procedure has been developed for the three dimensional analysis of reinforced concrete frames with cracked beam and column elements. Probability-based effective stiffness model is used for the effective flexural stiffness of a cracked member. In the analysis, the geometric nonlinearity due to the interaction of axial force and bending moment and the displacements of joints are also taken into account. The analytical procedure has been demonstrated through the application of R/C frame examples in which its accuracy and efficiency in comparison with experimental and other analytical results are verified. The effectiveness of the analytical procedure is also illustrated through a practical four story R/C frame example. The iterative procedure provides equally good and consistent prediction of lateral deflection and effective flexural member stiffness. The proposed analytical procedure is efficient from the viewpoints of computational effort and convergence rate.

Investigating deformations of RC beams: experimental and analytical study

  • Parrotta, Javier Ezeberry;Peiretti, Hugo Corres;Gribniak, Viktor;Caldentey, Alejandro Perez
    • Computers and Concrete
    • /
    • 제13권6호
    • /
    • pp.799-827
    • /
    • 2014
  • In this paper, a theoretical and experimental study of the sectional behaviour of reinforced concrete beams subjected to short-term loads is carried out. The pure bending behaviour is analysed with moment-curvature diagrams. Thus, the experimental results obtained from 24 beams tested by the authors and reported in literature are compared with theoretical results obtained from a layered model, which combines the material parameters defined in Model Code 2010 with some of the most recognized tensions-tiffening models. Although the tests were carried out for short-term loads, the analysis demonstrates that rheological effects can be important and must be accounted to understand the experimental results. Another important conclusion for the beams tested in this work is that the method proposed by EC-2 tends to underestimate the tension-stiffening effects, leading to inaccuracies in the estimations of deflections. Thus, the actual formulation is analysed and a simple modification is proposed. The idea is the separation of the deflection prediction in two parts: one for short-term loads and other for rheological effects (shrinkage). The results obtained are in fairly good agreement with the experimental results, showing the feasibility of the proposed modification.

설계 및 해석지원을 위한 PC용 단면계수계산 소프트웨어 개발에 관한 연구 (A Study on the Development of PC-based Section Property Calculation Software for Design Engineers)

  • 장성국;강신한
    • 산업경영시스템학회지
    • /
    • 제20권44호
    • /
    • pp.497-506
    • /
    • 1997
  • In this paper described is the software developed to calculate the physical properties of arbitrary section shape. The software consists of arbitrary section display module(ASDM) and section property calculation module(SPCM). ASDM defines and displays the shape of arbitrary section and SPCM calculates its properties such as area, centroid, moment of inertia, torsional constant, etc.. In many cases, calculation of section properties is not easy because user has to define the vertex coordinates which are difficult to do so in the case of arbitrary section. In the developed software, however, since user is asked to define only points of central lines and thickness of arbitrary section, the calculattion task of arbitrary section is very effective.

  • PDF

PSC보 교량의 유한요소 모델링방법에 관한 연구 (An Improved Finite Element Modeling Technique for Prestressed Concrete Girder Bridges)

  • 김광수;박선규;김형열
    • 콘크리트학회논문집
    • /
    • 제11권5호
    • /
    • pp.33-40
    • /
    • 1999
  • An improved finite element modeling technique is proposed for the assessment of load carrying capacity of partially prestressed concrete girder bridges. Based on the finite element method of analysis, shell and frame elements are used to model the slab and girders of the superstructure, respectively. In the modeling of superstructure, the emphasis is placed on the use of rigid link between the middle surface of slab an mid-plane of girder. This paper also includes the comparision of three different equations that are used in the calculation of effective moment of inertia for the partially prestressed concrete girders. Numerical analysis is performed for the unstrengthened and strengthened bridges. The obtained results are compared with those of load test for a prototype bridge. A good agreement is achieved between the numerical solutions by using the proposed method load test results.

외부 후긴장된 PSC보 교량의 해석방법 (Analysis of PSC Beam Bridges Strengthened by External Post-Tensioning Method)

  • 김광수;박선규;김형열;전찬기
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.399-404
    • /
    • 1999
  • An improved finite element modeling technique is proposed for the assessment of load carrying capacity partilly prestressed concrete beam bridges. Based on the finite element method of analysis, shell and frame elements are utilized to model the slab and beams of the superstructure, respectively. In the modeling of superstructure, the emphasis is placed on the use of rigid link between the middle surface of slab and mid-plane of beam. This paper also includes the comparision of three different equations that used in the calculation of effective moment of inertia for the partially prestressed concrete beams. Numerical analysis is performed for the unstrengthened and strengthened bridges. The obtained results are compared with those of load test for a prototype bridge. Agreement with the numerical solutions by using the proposed method and load test results is generally excellent.

  • PDF

비대칭(非對稱) 단면(斷面) 보강재(補剛材)의 강도해석(强度解析) (On the Strength Analysis of the Stiffener with Asymmetric Cross Section)

  • 임상전;양영순;이규성
    • 대한조선학회지
    • /
    • 제17권1호
    • /
    • pp.11-18
    • /
    • 1980
  • In the conventional ship's structures, the stiffeners with asymmetric sections have been widely used, in spite of the disadvantage on the point of strength, compared to those with symmetric sections. So far, the stiffened plating was usually analyzed not considering the geometric unsymmetry characteristics of the section, including only the cross sectional area and moment of inertia. In this paper, the stiffened plating is devided into the strips having a thin-walled open cross section by using the concept of the effective width. The geometric characteristics of the sections are also included. The governing equations are derived, which can be applied to the arbitrary cross section beams, and the symmetric and the asymmetric section beams which have the same cross sectional areas are analyzed by using the finite element method. From that result, we obtain the allowable load of the two sections, and compared them.

  • PDF