• Title/Summary/Keyword: effective charge separation

Search Result 23, Processing Time 0.08 seconds

Evaluation of the Effective Charge Density on Low Pressure Nanofiltration with the Separation Characteristics of Monovalent and Divalent Solutes in the Production of Drinking Water

  • Oh, Jeong-Ik;Taro, Urase
    • Environmental Engineering Research
    • /
    • v.16 no.1
    • /
    • pp.29-34
    • /
    • 2011
  • The electric charge on a membrane was investigated by analyzing the experimental rejection of various monovalent and divalent ionic solutes. The characteristics of the separation of ionic solutes using various nanofiltration membranes were obtained from an experimental nanofiltration set-up, with a surface area of $40cm^2$ under the operational pressures between 0.25-0.3 MPa. The state of the membrane electric charge was observed using separation coefficients, i.e., the permeation ratio of monovalent to divalent ions. To confirm the state of the membrane charge observed via the separation coefficient, a calculation using the extended Nernst-Planck equation, coupled with the Donnan equilibrium, assuming different electric charge states of the membrane, was compared with the experimental rejection of ionic solutes. The examination of the characteristics of separation using three types of nanofiltration membranes showed that one of the membranes carried a negative/positive double charge density inside, while other two membranes carried either a positive or negative charge density.

Nanofiltration of Electrolytes with Charged Composite Membranes

  • Choi, J.H.;Yeom, C.K.;Lee, J.M.;Suh, D.S.
    • Membrane Journal
    • /
    • v.13 no.1
    • /
    • pp.29-36
    • /
    • 2003
  • A characterization of the permeation and separation using single salt solution was carried out with charged composite membranes. Various charged composite membranes were fabricated by blending an ionic polymer with a nonionic polymer in different ratios. In this study, sodium alginate, chitosan and poly(vinyl alcohol) were employed as anionic, cationic and nonionic polymers, respectively. The permeation and separation behaviors of the aqueous salt solutions have been investigated through the charged composite membranes with various charge densities. As the content of the ionic polymer increased in the membrane, the hydrophilicity of the membrane increased, and pure water flux and the solution flux increased correspondingly, indicating that the permeation performance through the membrane is determined mainly by its hydrophilicity. Electrostatic interaction between the charged membrane and ionic solute molecules, that is, Donnan exclusion, was observed to be attributed to salt rejection to a greater extent, and molecular sieve mechanism was effective for the separation of salts under a similar electrostatic circumstance of solutes.

Development of Triboelectrostatic Separation Technique for Recovery of Nylon from Radiator of End-of-Life Vehicle (폐자동차(廢自動車) 라디에이터로부터 Nylon 회수(回收)를 위한 마찰하전정전선별(摩擦荷電靜電選別) 기술개발(技術開發))

  • Baek, Sang-Ho;Jeon, Ho-Seok;Kim, Su-Gang;Lee, Kwang-Hoon
    • Resources Recycling
    • /
    • v.22 no.1
    • /
    • pp.29-35
    • /
    • 2013
  • The study on the recovery of Nylon from a radiator of End-of-Life Vehicle was conducted by using triboelectrostatic separation technique. For the effective separation of the sample(Nylon, PP glass), charge polarity and amount of each sample with various charging materials have been investigated by faraday cage. And then, charging material was selected as carrying out basic separation experiments with materials that can be possible to polarize samples. Finally, the continuos type triboelectrostatic separator was developed with selected charging material and the recovery possibility of the sample was confirmed as carrying out various separation experiments.

Recovery of PET from Final Plastic Wastes using HDPE Cyclone Charger (HDPE 싸이클론 하전장치(荷電裝置)를 이용한 종말품(終末品) 폐(廢)플라스틱으로부터 PET의 회수(回收))

  • Jeon, Ho-Seok;Park, Chul-Hyun;Baek, Sang-Ho;Kim, Byoung-Gon
    • Resources Recycling
    • /
    • v.16 no.5
    • /
    • pp.51-56
    • /
    • 2007
  • Plastics are widely used in everyday life as very useful material. In Korea, about 4 million tons of plastic wastes are generated annually. However, recycling ratio is below 30%, and most of plastic wastes are disposed by landfill and incineration. Hence, the development of material separation technique that can recycle plastic wastes is a necessary situation. In this study, Triboelectrostatic separation for recovery of PET from final plastic wastes obtained from the sink product after wet-type gravity separation has been carried out. In the charging properties, the charge polarity and charge density of PET and PVC were very effective with the tirbo-charger made of PP and HDPE with the decrease in relative humidity. In material separation using HDPE cyclone charger, a PET grade of 96.80% and a recovery of 85.0% were achieved at 30 kV and the splitter position -2cm from the center. In order to obtain PET grade of 98.5%, PET recovery should be sacrificed by 24% with moving the splitter from the center to -6cm position.

Electrostatic Charging Measurement and PVC Separation of Triboeletrostatically Charged Plastic Particles using a Fluidized Bed Tribocharger

  • Shin, Jin-Hyouk;Lee, Jae-Keun
    • Journal of ILASS-Korea
    • /
    • v.7 no.2
    • /
    • pp.7-15
    • /
    • 2002
  • A particle flow visualization, electrostatic charging measurement and separation of triboelectrically charged particles in the external electric field by a fluidized bed tribocharger are conducted for the removal of PVC particles from mixed waste plastics. The laboratory-scale triboelectrostatic separation system consists of the fluidized bed tribocharger, a separation chamber, a collection chamber and a controller. PVC and PET particles can be imparted negative and positive surface charges respectively due to the difference of triboelectric charging series between particles and particles in the fluidized bed tribocharger, and can be separated by passing them through an external electric field. To visualize these charged particles, He-Ne laser is used with cylindrical lenses to generate a sheet beam. In the charging measurement, the particle motion analysis system (PMAS), capable of determining particle velocity and diameter. is used to non-intrusively measure particle behavior in high strength electric field. The average charge-to-mass ratios of PVC and PET particles are $1.4\;and\;1.2{\mu}C/kg$, respectively. The highly concentrated PVC (91.9%) can be recovered with a yield of about 96.1% from the mixture of PVC and PET materials for a single-stage processing. The triboelectrostatic separation system using the fluidized tribocharger shows the potential to be an effective method for removing PVC from mixed plastics for waste plastic recycling.

  • PDF

Facile Synthesis of g-C3N4 Modified Bi2MoO6 Nanocomposite with Improved Photoelectronic Behaviors

  • Zhu, Lei;Tang, Jia-Yao;Fan, Jia-Yi;Sun, Chen;Meng, Ze-Da;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.31 no.11
    • /
    • pp.593-600
    • /
    • 2021
  • Herein, a series of g-C3N4 modified Bi2MoO6 nanocomposites using Bi2MoO6 and melamine as original materials are fabricated via sintering process. For presynthesis of Bi2MoO6 an ultrasonic-assisted hydrothermal technique is researched. The structure and composition of the nanocomposites are characterized by Raman spectroscopy, X-ray diffraction (XRD), and high-resolution field emission scanning electron microscopy (SEM). The improved photoelectrochemical properties are studied by photocurrent density, EIS, and amperometric i-t curve analysis. It is found that the structure of Bi2MoO6 nanoparticles remains intact, with good dispersion status. The as-prepared g-C3N4/Bi2MoO6 nanocomposites (BMC 5-9) are selected and investigated by SEM analysis, which inhibits special morphology consisting of Bi2MoO6 nanoparticles and some g-C3N4 nanosheets. The introduction of small sized g-C3N4 nanosheets in sample BMC 9 is effective to improve the charge separation and transfer efficiency, resulting in enhancing of the photoelectric behavior of Bi2MoO6. The improved photoelectronic behavior of g-C3N4/Bi2MoO6 may be attributed to enhanced charge separation efficiency, photocurrent stability, and fast electron transport pathways for some energy applications.

Photocatalytic Performance of Graphene-TiO2 Hybrid Nanomaterials Under Visible Light

  • Park, Jaehyeung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.161-164
    • /
    • 2019
  • This study describes the development of graphene-$TiO_2$ conjugates for the enhancement of the photocatalytic efficiency of $TiO_2$. Graphene-based hybrid nanomaterials have attracted considerable attention because of the unique and advantageous properties of graphene. In the proposed hybrid nanomaterial, graphene serves as an electron acceptor to ensure fast charge transfer. Effective charge separation can, therefore, be achieved to slow down electron-hole recombination. This results in an enhancement of the photocatalytic activity of $TiO_2$. In addition, increased adsorption and interactions with the adsorbed reagents also lead to an improvement in the photocatalytic activity of graphene-$TiO_2$ hybrid nanomaterials. The acquired result is encouraging in that the photocatalytic activity of $TiO_2$ was initiated using visible light (630 nm) instead of the typical UV light.

Study on Effective Point of Measurement for Parallel Plate Type ionization Chamber with Different Spacing (평행평판형 이온함의 두 전극간의 간격 변화에 따른 유효측정점에 관한 연구)

  • 신교철;윤형근
    • Progress in Medical Physics
    • /
    • v.13 no.2
    • /
    • pp.55-61
    • /
    • 2002
  • In this work, EPM (effective point of measurement) of parallel plate ionization chamber with three different spacing were investigated. If the plate separation is less than 2 mm one generally assumes that the effective point of measurement is just behind the front window of the parallel plate ionization chamber. For chamber with relatively large separation, such as the ones used for very accurate exposure measurements, this assumption breaks down and the EPM depends on plate separation and thickness of the front window. For parallel plate chambers, conventional theoretical analyses suggest that the EPM is the inner front wall and that it shifts towards the geometric centre of the chamber as the plate separation increases. The PP-IC (parallel plate ionization chamber) is fabricated using acrylic plate for the chamber medium and printed circuit board for electrical configuration. The various sizes of the sensitive volumes designed so far are 0.9, 1.9, and 3.1 cc. The gap between two electrodes ranges from 3, 6, and 10mm. Also the charge-to-voltage converter is designed to collect the electrons produced in the ionization chamber cavity. As the result of our experiment, the EPM shift was within 0.6 mm in photon beams and 0.4 mm to 2.5 mm in electron beams for the plate separation of 6 mm and 10 mm. EPM shifts towards the geometric center of the chamber as the plate separation increases.

  • PDF

Preparation of WO3-TiO2 Photocatalyst and Evaluation of Its Photo-activity in the Visible Light Range (가시광 활성 WO3-TiO2 복합체 광촉매의 제조 및 이의 특성 평가)

  • Yeo, In-Chul;Kang, In-Cheol
    • Journal of Powder Materials
    • /
    • v.20 no.6
    • /
    • pp.474-478
    • /
    • 2013
  • The most general photocatalyst, $TiO_2$ and $WO_3$, are acknowledged to be ineffective in range of visible light. Therefore, many efforts have been directed at improving their activity such as: band-gap narrowing with non-metal element doping and making composites with high specific surface area to effectively separate electrons and holes. In this paper, the method was introduced to prepare a photo-active catalyst to visible irradiation by making a mixture with $TiO_2$ and $WO_3$. In the $TiO_2-WO_3$ composite, $WO_3$ absorbs visible light creating excited electrons and holes while some of the excited electrons move to $TiO_2$ and the holes remain in $WO_3$. This charge separation reduces electron-hole recombination resulting in an enhancement of photocatalytic activity. Added Ag plays the role of electron acceptor, retarding the recombination rate of excited electrons and holes. In making a mixture of $TiO_2-WO_3$ composite, the mixing route affects the photocatalytic activity. The planetary ball-mill method is more effective than magnetic stirring route, owing to a more effective dispersion of aggregated powders. The volume ratio of $TiO_2(4)$ and $WO_3(6)$ shows the most effective photocatalytic activity in the range of visible light in the view point of effective separation of electrons and holes.

Facile Synthesis of In2S3 Modified Ag3PO4 Nanocomposites with Improved Photoelectrochemical Properties and Stabilities

  • Zeng, Yi-Kai;Bo, Shenyu;Wang, Jun-hui;Cui, Bin;Gu, Hao;Zhu, Lei;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.30 no.11
    • /
    • pp.601-608
    • /
    • 2020
  • In this work, Ag3PO4/In2S3 nanocomposites with low loading of In2S3 (5-15 wt %) are fabricated by two step chemical precipitation approach. The microstructure, composition and improved photoelectrochemical properties of the as-prepared composites are studied by X-ray diffraction pattern (XRD), field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), photocurrent density, EIS and amperometric i-t curve analysis. It is found that most of In2S3 nanoparticles are deposited on the surfaces of Ag3PO4. The as-prepared Ag3PO4/In2S3 composite (10 wt%) is selected and investigated by SEM and TEM, which exhibits special morphology consisting of lager size substrate (Ag3PO4), particles and some nanosheets (In2S3). The introduction of In2S3 is effective at improving the charge separation and transfer efficiency of Ag3PO4/In2S3, resulting in an enhancement of photoelectric behavior. The origin of the enhanced photoelectrochemical activity of the In2S3-modified Ag3PO4 may be due to the improved charge separation, photocurrent stability and oriented electrons transport pathways in environment and energy applications.