• Title/Summary/Keyword: edge of image

Search Result 2,461, Processing Time 0.029 seconds

Line-Edge Detection Using New 2-D Wavelet Function (새로운 2-D 웨이브렛 함수를 이용한 라인-에지 검출)

  • Bae Sang-Bum;Kim Nam-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.2
    • /
    • pp.174-180
    • /
    • 2005
  • Points of sharp variations in image are the most important components when we analyze the features of image. And they include a variety of information about image's shape and location etc. So a lot of researches for detecting edges have been continued. Edge detection operators which were used at the early stage of the research were to utilize relations among neighboring pixels. These methods detect edge at all boundaries, therefore they perform edge detection twice about curves below some width such as line-edge. In the meantime, wavelet transform which is presented as a new technique of signal processing field provides multiscale edge detection and is being applied widely in many fields that analyze edge-like characteristic. Therefore, in this paper we detected line-edge with new 2-D wavelet function which is independent of line's width.

  • PDF

A Study on Wavelet Function for Improved Edge Detection Properties (개선된 에지검출 특성을 위한 웨이브렛 함수에 관한 연구)

  • Bae, Sang-Bum;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.6
    • /
    • pp.1156-1161
    • /
    • 2007
  • Edge representing the boundary between two regions with the large briskness difference in mage includes diverse information about object. Therefore, this information has been utilized in fields such as image segmentation and object recognition. There are many kinds of edge according to duration time and the amplitude of brightness variation and edge is generally detected through the differential. Recently, in fields of image processing and computer vision, edge detection methods have been proposed to use in specific applications. Hence, in this paper the wavelet function for improved edge detection properties was proposed and detected line-edge components of images and its performance was proven through simulations.

A Wavelet-based Adaptive Image Watermarking Using Edge Table (영상의 에지 특성을 고려한 웨이블릿 기반의 적응적인 워터마킹 기법)

  • Lee Jae-Hyuk;Moon Ho-Seok;Park Sang-Sung;Jang Dong-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.2 s.40
    • /
    • pp.53-63
    • /
    • 2006
  • A discrete wavelet transform(DWT)-based image watermarking algorithm is proposed in this paper, the proposed method decompose the original image into four subsampled images. Subsampled images are transformed by 2 level DWT, respectively. The proposed method embeds the watermark into one of the subsampled DWT images using edge table that represents dege characteristics of the original image. Without an original image, a watermark is extracted through comparison one subsampled DWT image inserted the watermark with the rest of the submapled DWT images. many exiting methodes do not adequately estimate edge regions where intensities are changed abruptly. The proposed method address with an edge table. Also, even if the watermark is embedded into a low frequency area, our method preserves the image quality. The vality of the proposed method is demonstrated through the PSNR test and subjective image quality that human eyes feel.

  • PDF

Line feature extraction in a noisy image

  • Lee, Joon-Woong;Oh, Hak-Seo;Kweon, In-So
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.137-140
    • /
    • 1996
  • Finding line segments in an intensity image has been one of the most fundamental issues in computer vision. In complex scenes, it is hard to detect the locations of point features. Line features are more robust in providing greater positional accuracy. In this paper we present a robust "line features extraction" algorithm which extracts line feature in a single pass without using any assumptions and constraints. Our algorithm consists of five steps: (1) edge scanning, (2) edge normalization, (3) line-blob extraction, (4) line-feature computation, and (5) line linking. By using edge scanning, the computational complexity due to too many edge pixels is drastically reduced. Edge normalization improves the local quantization error induced from the gradient space partitioning and minimizes perturbations on edge orientation. We also analyze the effects of edge processing, and the least squares-based method and the principal axis-based method on the computation of line orientation. We show its efficiency with some real images.al images.

  • PDF

Image Forensic Decision Algorithm using Edge Energy Information of Forgery Image (위·변조 영상의 에지 에너지 정보를 이용한 영상 포렌식 판정 알고리즘)

  • Rhee, Kang Hyeon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.3
    • /
    • pp.75-81
    • /
    • 2014
  • In a distribution of the digital image, there is a serious problem that is distributed an illegal forgery image by pirates. For the problem solution, this paper proposes an image forensic decision algorithm using an edge energy information of forgery image. The algorithm uses SA (Streaking Artifacts) and SPAM (Subtractive Pixel Adjacency Matrix) to extract the edge energy informations of original image according to JPEG compression rate(QF=90, 70, 50 and 30) and the query image. And then it decides the forge whether or not by comparing the edge informations between the original and query image each other. According to each threshold in TCJCR (Threshold by Combination of JPEG Compression Ratios), the matching of the edge informations of original and query image is excused. Through the matching experiments, TP (True Positive) and FN (False Negative) is 87.2% and 13.8% respectively. Thus, the minimum average decision error is 0.1349. Also, it is confirmed that the performed class evaluation of the proposed algorithm is 'Excellent(A)' because of the AUROC (Area Under Receiver Operating Characteristic) curve is 0.9388 by sensitivity and 1-specificity.

Optimized Multiple Description Lattice Vector Quantization Coding for 3D Depth Image

  • Zhang, Huiwen;Bai, Huihui;Liu, Meiqin;Zhao, Yao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.1140-1154
    • /
    • 2015
  • Multiple Description (MD) coding is a promising alternative for the robust transmission of information over error-prone channels. Lattice vector quantization (LVQ) is a significant version of MD techniques to design an MD image coder. However, different from the traditional 2D texture image, the 3D depth image has its own special characteristics, which should be taken into account for efficient compression. In this paper, an optimized MDLVQ scheme is proposed in view of the characteristics of 3D depth image. First, due to the sparsity of depth image, the image blocks can be classified into edge blocks and smooth blocks, which are encoded by different modes. Furthermore, according to the boundary contents in edge blocks, the step size of LVQ can be regulated adaptively for each block. Experimental results validate the effectiveness of the proposed scheme, which show better rate distortion performance compared with the conventional MDLVQ.

Depth Map Generation Algorithm from Single Defocused Image (흐린 초점의 단일영상에서 깊이맵 생성 알고리즘)

  • Lee, Yong-Hwan;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.3
    • /
    • pp.67-71
    • /
    • 2016
  • This paper addresses a problem of defocus map recovery from single image. We describe a simple effective approach to estimate the spatial value of defocus blur at the edge location of the image. At first, we perform a re-blurring process using Gaussian function with input image, and calculate a gradient magnitude ratio with blurring amount between input image and re-blurred image. Then we get a full defocus map by propagating the blur amount at the edge location. Experimental result reveals that our method outperforms a reliable estimation of depth map, and shows that our algorithm is robust to noise, inaccurate edge location and interferences of neighboring edges within input image.

Image Quality Evaluation of Medical Image Enhancement Parameters in the Digital Radiography System (디지털 방사선시스템에서 영상증강 파라미터의 영상특성 평가)

  • Kim, Chang-Soo;Kang, Se-Sik;Ko, Seong-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.6
    • /
    • pp.329-335
    • /
    • 2010
  • Digital imaging detectors can use a variety of detection materials to convert X-ray radiation either to light or directly to electron charge. Many detectors such as amorphous silicon flat panels, CCDs, and CMOS photodiode arrays incorporate a scintillator screen to convert x-ray to light. The digital radiography systems based on semiconductor detectors, commonly referred to as flat panel detectors, are gaining popularity in the clinical & hospital. The X-ray detectors are described between a-Silicon based indirect type and a-Selenium based direct type. The DRS of detectors is used to convert the x-ray to electron hole pairs. Image processing is described by specific image features: Latitude compression, Contrast enhancement, Edge enhancement, Look up table, Noise suppression. The image features are tuned independently. The final enhancement result is a combination of all image features. The parameters are altered by using specific image features in the different several hospitals. The image in a radiological report consists of two image evaluation processes: Clinical image parameters and MTF is a descriptor of the spatial resolution of a digital imaging system. We used the edge test phantom and exposure procedure described in the IEC 61267 to obtain an edge spread function from which the MTF is calculated. We can compare image in the processing parameters to change between original and processed image data. The angle of the edge with respect to the axes of detector was varied in order to determine the MTF as a function of direction. Each MTF is integrated within the spatial resolution interval of 1.35-11.70 cycles/mm at the 50% MTF point. Each image enhancement parameters consists of edge, frequency, contrast, LUT, noise, sensitometry curve, threshold level, windows. The digital device is also shown to have good uniformity of MTF and image parameters across its modality. The measurements reported here represent a comprehensive evaluation of digital radiography system designed for use in the DRS. The results indicate that the parameter enables very good image quality in the digital radiography. Of course, the quality of image from a parameter is determined by other digital devices in addition to the proper clinical image.

Image Edge Detection Algorithm applied Directional Structure Element Weighted Entropy Based on Grayscale Morphology (그레이스케일 형태학 기반 방향성 구조적 요소의 가중치 엔트로피를 적용한 영상에지 검출 알고리즘)

  • Chang, Yu;Cho, JoonHo;Moon, SungRyong
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.2
    • /
    • pp.41-46
    • /
    • 2021
  • The method of the edge detection algorithm based on grayscale mathematical morphology has the advantage that image noise can be removed and processed in parallel, and the operation speed is fast. However, the method of detecting the edge of an image using a single structural scale element may be affected by image information. The characteristics of grayscale morphology may be limited to the edge information result of the operation result by repeatedly performing expansion, erosion, opening, and containment operations by repeating structural elements. In this paper, we propose an edge detection algorithm that applies a structural element with strong directionality to noise and then applies weighted entropy to each pixel information in the element. The result of applying the multi-scale structural element applied to the image and the result of applying the directional weighted entropy were compared and analyzed, and the simulation result showed that the proposed algorithm is superior in edge detection.

Block-matching and 3D filtering algorithm in X-ray image with photon counting detector using the improved K-edge subtraction method

  • Kyuseok Kim;Youngjin Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2057-2062
    • /
    • 2024
  • Among photon counting detector (PCD)-based technologies, the K-edge subtraction (KES) method has a very high material decomposition efficiency. Yet, since the increase in noise in the X-ray image to which the KES method is applied is inevitable, research on image quality improvement is essential. Here, we modeled a block-matching and 3D filtering (BM3D) algorithm and applied it to PCD-based X-ray images with the improved KES (IKES) method. For PCD modeling, Monte Carlo simulation was used, and a phantom composed of iodine substances with different concentrations was designed. The IKES method was modeled by adding a log term to KES, and the X-ray image used for subtraction was obtained by applying the 3.0 keV range based on the K-edge region of iodine. As a result, the IKES image using the BM3D algorithm showed the lowest normalized noise power spectrum value. In addition, we confirmed that the contrast-to-noise ratio and no-reference-based evaluation results when the BM3D algorithm was applied to the IKES image were improved by 29.36 % and 20.56 %, respectively, compared to the noisy image. In conclusion, we demonstrated that the IKES imaging technique using a PCD-based detector and the BM3D algorithm fusion technique were very efficient for X-ray imaging.