• 제목/요약/키워드: edge labeling

검색결과 88건 처리시간 0.021초

PAIR MEAN CORDIAL LABELING OF SOME UNION OF GRAPHS

  • R. PONRAJ;S. PRABHU
    • Journal of Applied and Pure Mathematics
    • /
    • 제6권1_2호
    • /
    • pp.55-69
    • /
    • 2024
  • Let a graph G = (V, E) be a (p, q) graph. Define $${\rho}=\{\array{{\frac{p}{2}} && p\;\text{is even} \\ {\frac{p-1}{2}} && p\;\text{is odd,}}$$ and M = {±1, ±2, … ± 𝜌} called the set of labels. Consider a mapping λ : V → M by assigning different labels in M to the different elements of V when p is even and different labels in M to p - 1 elements of V and repeating a label for the remaining one vertex when p is odd. The labeling as defined above is said to be a pair mean cordial labeling if for each edge uv of G, there exists a labeling $\frac{{\lambda}(u)+{\lambda}(v)}{2}$ if λ(u) + λ(v) is even and $\frac{{\lambda}(u)+{\lambda}(v)+1}{2}$ if λ(u) + λ(v) is odd such that ${\mid}\bar{\mathbb{s}}_{{\lambda}_1}-\bar{\mathbb{s}}_{{\lambda}^c_1}{\mid}\,{\leq}\,1$ where $\bar{\mathbb{s}}_{{\lambda}_1}$ and $\bar{\mathbb{s}}_{{\lambda}^c_1}$ respectively denote the number of edges labeled with 1 and the number of edges not labeled with 1. A graph G with a pair mean cordial labeling is called a pair mean cordial graph. In this paper, we investigate the pair mean cordial labeling behavior of some union of graphs.

SOME 4-TOTAL PRIME CORDIAL LABELING OF GRAPHS

  • PONRAJ, R.;MARUTHAMANI, J.;KALA, R.
    • Journal of applied mathematics & informatics
    • /
    • 제37권1_2호
    • /
    • pp.149-156
    • /
    • 2019
  • Let G be a (p, q) graph. Let $f:V(G){\rightarrow}\{1,2,{\ldots},k\}$ be a map where $k{\in}{\mathbb{N}}$ and k > 1. For each edge uv, assign the label gcd(f(u), f(v)). f is called k-Total prime cordial labeling of G if ${\mid}t_f(i)-t_f(j){\mid}{\leq}1$, $i,j{\in}\{1,2,{\ldots},k\}$ where $t_f$(x) denotes the total number of vertices and the edges labelled with x. A graph with a k-total prime cordial labeling is called k-total prime cordial graph. In this paper we investigate the 4-total prime cordial labeling of some graphs.

4-TOTAL DIFFERENCE CORDIAL LABELING OF SOME SPECIAL GRAPHS

  • PONRAJ, R.;PHILIP, S. YESU DOSS;KALA, R.
    • Journal of Applied and Pure Mathematics
    • /
    • 제4권1_2호
    • /
    • pp.51-61
    • /
    • 2022
  • Let G be a graph. Let f : V (G) → {0, 1, 2, …, k-1} be a map where k ∈ ℕ and k > 1. For each edge uv, assign the label |f(u) - f(v)|. f is called k-total difference cordial labeling of G if |tdf (i) - tdf (j) | ≤ 1, i, j ∈ {0, 1, 2, …, k - 1} where tdf (x) denotes the total number of vertices and the edges labeled with x. A graph with admits a k-total difference cordial labeling is called k-total difference cordial graphs. In this paper we investigate the 4-total difference cordial labeling behaviour of shell butterfly graph, Lilly graph, Shackle graphs etc..

k-PRIME CORDIAL GRAPHS

  • PONRAJ, R.;SINGH, RAJPAL;KALA, R.;NARAYANAN, S. SATHISH
    • Journal of applied mathematics & informatics
    • /
    • 제34권3_4호
    • /
    • pp.227-237
    • /
    • 2016
  • In this paper we introduce a new graph labeling called k-prime cordial labeling. Let G be a (p, q) graph and 2 ≤ p ≤ k. Let f : V (G) → {1, 2, . . . , k} be a map. For each edge uv, assign the label gcd (f(u), f(v)). f is called a k-prime cordial labeling of G if |vf (i) − vf (j)| ≤ 1, i, j ∈ {1, 2, . . . , k} and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number of vertices labeled with x, ef (1) and ef (0) respectively denote the number of edges labeled with 1 and not labeled with 1. A graph with a k-prime cordial labeling is called a k-prime cordial graph. In this paper we investigate the k-prime cordial labeling behavior of a star and we have proved that every graph is a subgraph of a k-prime cordial graph. Also we investigate the 3-prime cordial labeling behavior of path, cycle, complete graph, wheel, comb and some more standard graphs.

PAIR MEAN CORDIAL LABELING OF GRAPHS OBTAINED FROM PATH AND CYCLE

  • PONRAJ, R.;PRABHU, S.
    • Journal of Applied and Pure Mathematics
    • /
    • 제4권3_4호
    • /
    • pp.85-97
    • /
    • 2022
  • Let a graph G = (V, E) be a (p, q) graph. Define $${\rho}\;=\;\{\array{{\frac{p}{2}}&p\text{ is even}\\{\frac{p-1}{2}}\;&p\text{ is odd,}}$$ and M = {±1, ±2, ⋯ ± 𝜌} called the set of labels. Consider a mapping λ : V → M by assigning different labels in M to the different elements of V when p is even and different labels in M to p - 1 elements of V and repeating a label for the remaining one vertex when p is odd. The labeling as defined above is said to be a pair mean cordial labeling if for each edge uv of G, there exists a labeling $\frac{{\lambda}(u)+{\lambda}(v)}{2}$ if λ(u) + λ(v) is even and $\frac{{\lambda}(u)+{\lambda}(v)+1}{2}$ if λ(u) + λ(v) is odd such that ${\mid}\bar{\mathbb{S}}_{{\lambda}_1}-\bar{\mathbb{S}}_{{\lambda}^c_1}{\mid}{\leq}1$ where $\bar{\mathbb{S}}_{{\lambda}_1}$ and $\bar{\mathbb{S}}_{{\lambda}^c_1}$ respectively denote the number of edges labeled with 1 and the number of edges not labeled with 1. A graph G for which there exists a pair mean cordial labeling is called a pair mean cordial graph. In this paper, we investigate the pair mean cordial labeling of graphs which are obtained from path and cycle.

PAIR DIFFERENCE CORDIAL LABELING OF PETERSEN GRAPHS P(n, k)

  • R. PONRAJ;A. GAYATHRI;S. SOMASUNDARAM
    • Journal of Applied and Pure Mathematics
    • /
    • 제5권1_2호
    • /
    • pp.41-53
    • /
    • 2023
  • Let G = (V, E) be a (p, q) graph. Define $${\rho}=\{{\frac{2}{p}},\;{\text{{\qquad} if p is even}}\\{\frac{2}{p-1}},\;{{\text{if p is odd}}$$ and L = {±1, ±2, ±3, … , ±ρ} called the set of labels. Consider a mapping f : V ⟶ L by assigning different labels in L to the different elements of V when p is even and different labels in L to p-1 elements of V and repeating a label for the remaining one vertex when p is odd.The labeling as defined above is said to be a pair difference cordial labeling if for each edge uv of G there exists a labeling |f(u) - f(v)| such that ${\mid}{\Delta}_{f_1}-{\Delta}_{f^c_1}{\mid}{\leq}1$, where ${\Delta}_{f_1}$ and ${\Delta}_{f^c_1}$ respectively denote the number of edges labeled with 1 and number of edges not labeled with 1. A graph G for which there exists a pair difference cordial labeling is called a pair difference cordial graph. In this paper we investigate pair difference cordial labeling behaviour of Petersen graphs P(n, k) like P(n, 2), P(n, 3), P(n, 4).

인물 사진에서의 얼굴 추출과 눈 개폐 여부 검증 (Face detection and eye blinking verification in common photos)

  • 배정호;황영철;차의영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2008년도 춘계종합학술대회 A
    • /
    • pp.801-804
    • /
    • 2008
  • 얼굴 추출 과정은 얼굴 인식 과정의 가장 선행되는 과정이라고 할 수 있다. 하지만 얼굴이라는 객체는 매우 고유동적인 성격을 가지고 있어서 접근하는 방법을 어떻게 하느냐에 따라서 그 결과가 매우 달라지는 경우가 많다. 본 논문은 배경 속에 들어가 있는 얼굴이라는 객체를 CbCr 분포 맵에 기반을 둔 색상 정보와 세그멘테이션, 레이블링을 통해 추출, 색상 정보와 에지 정보를 이용하여 눈 영역을 검출하고 개폐 여부를 검증하는 알고리즘을 수행하였다.

  • PDF

제품 설계 정보와 영상 데이터의 병합을 위한 에지 기반 라벨링에 의한 영상 분할 (Image segmentation by edge-based labeling for Integrating product design information and image data.)

  • 이형재;김용일;양형정
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2005년도 추계학술발표대회 및 정기총회
    • /
    • pp.147-150
    • /
    • 2005
  • 본 논문에서는 협동적 제품 개발 환경에서 제품 설계 데이터와 제품 내의 객체 정보를 매칭하고 영상 기반에서 공학 데이터를 검색하기 위한 목적으로 영상 내의 객체의 각 영역을 분할 하고자 한다. 제품 설계시 생성 과정에서 CAD 툴 등으로부터 생성되는 영상은 객체 화소값의 차이가 적고 생산환경에 맞게 실시간으로 정보를 제공 할 수 있어야 한다. 위와 같은 두 가지 사항을 해결하기 위해, 전처리 과정이 없이 객체 내의 각 부분 정보를 알 수 있는 에지 기반 라벨링(Edge_Based Labeling) 기법을 제안한다.

  • PDF

DISTINGUISHING NUMBER AND DISTINGUISHING INDEX OF STRONG PRODUCT OF TWO GRAPHS

  • Alikhani, Saeid;Soltani, Samaneh
    • 호남수학학술지
    • /
    • 제42권4호
    • /
    • pp.645-651
    • /
    • 2020
  • The distinguishing number (index) D(G) (D'(G)) of a graph G is the least integer d such that G has an vertex labeling (edge labeling) with d labels that is preserved only by a trivial automorphism. The strong product G ☒ H of two graphs G and H is the graph with vertex set V (G) × V (H) and edge set {{(x1, x2),(y1, y2)}|xiyi ∈ E(Gi) or xi = yi for each 1 ≤ i ≤ 2.}. In this paper we study the distinguishing number and the distinguishing index of strong product of two graphs. We prove that for every k ≥ 2, the k-th strong power of a connected S-thin graph G has distinguishing index equal two.

A NEW VERTEX-COLORING EDGE-WEIGHTING OF COMPLETE GRAPHS

  • Farahani, Mohammad Reza
    • Journal of applied mathematics & informatics
    • /
    • 제32권1_2호
    • /
    • pp.1-6
    • /
    • 2014
  • Let G = (V ; E) be a simple undirected graph without loops and multiple edges, the vertex and edge sets of it are represented by V = V (G) and E = E(G), respectively. A weighting w of the edges of a graph G induces a coloring of the vertices of G where the color of vertex v, denoted $S_v:={\Sigma}_{e{\ni}v}\;w(e)$. A k-edge-weighting of a graph G is an assignment of an integer weight, w(e) ${\in}${1,2,...,k} to each edge e, such that two vertex-color $S_v$, $S_u$ be distinct for every edge uv. In this paper we determine an exact 3-edge-weighting of complete graphs $k_{3q+1}\;{\forall}_q\;{\in}\;{\mathbb{N}}$. Several open questions are also included.