• Title/Summary/Keyword: edge displacement

Search Result 213, Processing Time 0.022 seconds

FINITE ELEMENT ANALYSIS OF THE INFLUENCE OF ESTHETIC POSTS ON INCISORS (심미 포스트가 전치에 미치는 응력과 변위에 관한 삼차원 유한요소법적 분석)

  • Kwon Tae-Hoon;Hwang Jung-Won;Kim Sung-Hun;Shin Sang-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.5
    • /
    • pp.582-595
    • /
    • 2003
  • Statement of problem : Most posts are metallic, but in response to the need for a post that possesses optical properties compatible with an all-ceramic crown. an esthetic post has been developed. Although there have been many studies about the esthetic post materials, 3-dimensional finite element studies about the stress distribution of them are in rare. Purpose : The purpose of this study is to investigate comparatively the distribution of stresses of the restored, endodontically treated maxillary incisors with the esthetic post materials and the displacement on the cement layer on simulated occlusal loading by using a 3-dimensional finite element analysis model. Material and method : Four 3-dimensional finite element models were constructed in a view of a maxillary central incisor, a post, a core, and the supporting tissues to investigate the stresses in various esthetic posts and cores and the displacement on the cement layer (Model 1 ; Cast gold post and core, Model 2 ; Glass fiber post with composite core, Model 3 ; Zirconia post with composite core. Model 4 ; Zirconia post with ceramic core). Force of 300N was applied to the incisal edge and the cingulum (centric stop point) with the angle of 135-degree to the long axis of the tooth. Results : 1. The stresses and displacement on the incisal edge were higher than on the cingulum 2. The stresses in dentin were the highest in Model 2 (Glass fiber post with composite core), and the second was Model 3, the third Model 1, and the lowest Model 4. 3. The stresses in post and core were the highest in Model 4 (Zirconia post with ceramic core), and the second was Model 1, the third Model 3, and the lowest Model 2. 4. The displacement on the cement layer was the highest in Model 2 (Glass fiber post with composite core), and the second was Model 3, the third Model 1, and the lowest Model 4. Conclusion : When a functional maximum bite force was applied, the distribution of stresses or the esthetic post and core materials and the displacement on the cement layer were a little different. It seems that restoring extensively damaged incisors with esthetic post and core materials would be decided according to the remaining tooth structure.

A Case Report on the Treatment of A TMJ Osteoarthritis Patient with Anterior Open Bite Using An Intermaxillary Traction Device (전치부 개교합을 동반한 골관절염 환자에 대한 악간견인장치의 응용)

  • 류상수;김선희;기우천
    • Journal of Oral Medicine and Pain
    • /
    • v.23 no.4
    • /
    • pp.379-385
    • /
    • 1998
  • A patient with TMJ osteoarthritis and anterior open bite was treated with an intermaxillary traction device. Pretreatment examination revelaed a pain in both TMJ during mouth opening, moderate tendernesso f left sternocleidomastoid and right trapezius muscles. Anterior open Bite was aobserved with interincisal distance of 2mm. Tomograms and MRI showed anterior disc displacement withouit reductoin of both temporomandibular joints, and the condyles were flattened and slightly eroded. A pair of full-coverage occlusal appliances was made on both maxillary and mandibular dentition, with pivoting fulcrum on the site of the second moalr. Traction force was gained by the intermaxillary orthodontic elastics which were hooked by orthodontic brackets on the labial surfaces of the upper and lower anterior and premolar teeth. After 8 weeks of traction treatment, the joint pain was subsided completely and the anterior open bite was closed to get an edge to edge relationship of anterior teeth.

  • PDF

Clinical Features of the Recurred Patients with Temporomandibular Disorders (측두하악장애 재발환자의 임상양태에 관한 연구)

  • 고명연;박준상
    • Journal of Oral Medicine and Pain
    • /
    • v.23 no.4
    • /
    • pp.369-377
    • /
    • 1998
  • A patient with TMJ osteoarthritis and anterior open bite was treated with an intermaxillary traction device. Pretreatment examination revelaed a pain in both TMJ during mouth opening, moderate tendernesso f left sternocleidomastoid and right trapezius muscles. Anterior open Bite was aobserved with interincisal distance of 2mm. Tomograms and MRI showed anterior disc displacement withouit reductoin of both temporomandibular joints, and the condyles were flattened and slightly eroded. A pair of full-coverage occlusal appliances was made on both maxillary and mandibular dentition, with pivoting fulcrum on the site of the second moalr. Traction force was gained by the intermaxillary orthodontic elastics which were hooked by orthodontic brackets on the labial surfaces of the upper and lower anterior and premolar teeth. After 8 weeks of traction treatment, the joint pain was subsided completely and the anterior open bite was closed to get an edge to edge relationship of anterior teeth.

  • PDF

Calculation of weight functions in single edge notched specimen (SEN시편에서의 무게함수 계산)

  • 안득만
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.604-610
    • /
    • 1991
  • In this paper, the weight functions for the Mode I and Mode II in SEN(single edge notched) specimen are obtained by superposition of the displacement in the singular field of the Buckner type and the displacements by opposite tractions induced by the singular field. The stress intensity factors, $K_{I}$ and $K_{II}$ are calculated by the weight function theory in SEN specimen under the loading equivalent to uniform tension and shear at infinity in Griffith crack. And the results are compared with the exact solutions.s.

Analysis of Cutting Mechanism by Image Processing on Micro-Cutting in SEM (전자현미경내 마이크로 절삭의 화상처리에 의한 절삭 기구 해석)

  • 허성중
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.3
    • /
    • pp.89-95
    • /
    • 2003
  • This research analyzes the cutting mechanism of A1100-H18 of commercially pure aluminum by image processing in SEM(Scanning Electron Microscope) for the measurement of strain rate distribution near a cutting edge in orthogonal micro-cutting. The distribution is measured using various methods in order. The methods are in-situ observations of cutting process in SEM, inputting image data, a computer image processing, calculating displacements by SSDA(Sequential Similarity Detection Algorithm) and calculating strain rates by FEM. The min results obtained are as follows: (1)It enables to measure a microscopic displacement near a cutting edge. (2) An application of this system to cutting process of various materials will help to make cutting mechanism clear.

Influence of Boundary Stress Singularities on the Vibration of Clamped and Simply Supported Sectorial Plates With Various Radial Edge Conditions (다양한 방사연단 조건을 갖는 고정 및 단순지지 부채꼴형 평판 진동에 대한 경계응력특이도의 영향)

  • Kim, Joo-Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.601-613
    • /
    • 1998
  • This paper reports the first-of-its-kind free vibration solutions for sectorial plates having re-entrant corners causing stress singularities when the circular edge is either clamped or simply supported. The Ritz method is employed with two sets of admissible functions assumed for the transverse vibratory displacements. Accurate frequencies and normalized contours of the transverse vibratory displacement are presented for the spectra of sector angles.

  • PDF

Flexural Vibration of Clamped and Simplv Supported Sectorial Plates with Combinations of Simply Supported and Free Radial Edges

  • Han, Bong-Ko;Kim, Joo-Woo
    • Nuclear Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.214-225
    • /
    • 1999
  • An accurate method is presented for flexural vibrations of sectorial plates having simply supported-free and free-free radial edges, when the circular edge is either clamped or simply supported. The classical Ritz method is employed with two sets of admissible functions assumed for the transverse vibratory displacements. These sets consist of : (1) mathematically complete algebraic-trigonometric polynomials which gurantee convergence to exact frequencies as sufficient terms are retained, and (2) comer functions which account for the bending moment singularities at re-entrant comer of the radial edges having arbitrary edge conditions. Accurate (at least four significant figures) frequencies and normalized contours of the transverse vibratory displacement are presented for the spectra of corner angles [90$^{\circ}$, 180$^{\circ}$(semi-circular), 270$^{\circ}$, 300$^{\circ}$, 330$^{\circ}$, 350$^{\circ}$, 355$^{\circ}$, 360$^{\circ}$ (complete circular)] causing a re-entrant comer of the radial edges. Future solutions drawn from alternative numerical procedures and finite element techniques may be compared with these accurate results.

  • PDF

A Study on the Vibration Characteristics Analysis of Composite Materials by Using Electronic Speckle PatternInterferometry Method (전자처리 스페클 패턴 간섭법을 이용한 복합재료의 진동 특성 해석에 관한 연구)

  • 김형택;정현철;양승필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.388-392
    • /
    • 1995
  • The Electronic Speckle Pattern Interferometry(ESPI) has been applied to many technical problems such as deformation and displacement measurement, strain visualization and surface roughness monitoring. Composite materials have various complicated characteristics depending on the ply materials,ply orientations,ply stacking sequences and boundary conditions. Therefore, it is difficult to analyze composite material. For efficient use of composit materials in engineering applications, the dynamic behavior such as, natural frequencies and modal patterns should be identified. This studying presents FEM results for the free vibration of symmetrically laminated composite as [30/-30/90] $_{s}$. The natural frequencies of laminated composite rectangular plates having the boundary condition(:2-edge clamped) are experimentally obtained. In order to demonstrate the validity of the experiment,FEM analysis using ANSYS was performed and natural frequencies experimentally obtained is compared with calculated by FEM analysis. The results obtained from both experiment and FEM analysis show a good agreement.t.

  • PDF

Green's Function of Edge Crack in Transversely Isotropic Piezoelectric Material Under Anti-Plane Loads (횡등방 압전재료의 면외하중 모서리 균열에 대한 그린함수)

  • Choi, Sung-Ryul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.1
    • /
    • pp.43-53
    • /
    • 2008
  • Surface edge crack in transversely isotropic piezoelectric material is analyzed. The concentrated antiplane mechanical and inplane electrical loadings are applied to an arbitrary point of the surface, where the impermeable crack boundary condition is imposed. Using Mellin transform the problem is formulated, from which Wiener-Hopf equations are derived. By solving the equations the solution is obtained in a closed form. Mechanical and electric intensity factors and energy release rate are obtained and discussed. This problem could be used as a Green's function to generate the solutions of other problems with the same geometry but of different loading conditions.

Force identification by using specific forms of PVDF patches

  • Chesne, Simon;Pezerat, Charles
    • Smart Structures and Systems
    • /
    • v.15 no.5
    • /
    • pp.1203-1214
    • /
    • 2015
  • This paper deals with the experimental validation of the use of PVDF Patches for the assessment of spatial derivatives of displacement field. It focuses more exactly on the shear Force Identification by using Specific forms of PVDF patcHes (FISH) on beams. An overview of the theoretical approach is exposed. The principle is based on the use of the weak form of the equation of motion of the beam which allows the shear forces to be extracted at one edge of the sensor when this last has a specific form. The experimental validation is carried out with a cantilever steel beam, excited by a shaker at its free boundary. The validation consists in comparing the shear force measured by the designed sensor glued at the free edge and the directly measured force applied by the shaker. The sensor is made of two patches, called the "stiffness" patch and the "mass" patch. The use of both patches allows one to identify correctly the shear force on a large frequency domain. The use of only the stiffness patch is valid in the low frequency domain and has the advantage to have a frequency-independent gain that allows its use in real time.