• Title/Summary/Keyword: edge coupled

Search Result 137, Processing Time 0.039 seconds

Consideration of Optimized Thickness of Dielectric Layers in Miniaturization of Microwave Devices and Application of Aerosol Deposition Method (마이크로파 소자의 소형화에 있어서 유전체 막의 최적화 두께에 대한 고찰 및 Aerosol Deposition Method의 적용)

  • Kim, Yoon-Hyun;Lee, Dae-Seok;Lee, Ji-Won;Choi, Yoon-Seok;Lee, Young-Jin;Nam, Song-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.349-349
    • /
    • 2008
  • 유비쿼터스 시대를 맞이하여 현재의 전자제품은 고주파 환경에서의 소형화된 마이크로파 소자를 요구하고 있다. 현재 구현되고 있는 마이크로파 소자의 형태는 여러 가지 전송선로 중에 하나로서 금속의 그라운드면 위에 유전체 막을 형성하고 그 위에 금속선을 정밀하게 패터닝하여 각 종 소자를 연결하는 microstrip line의 형태가 많이 사용된다. 이러한 microstrip line 형태의 소자를 설계할 시에 소자 자체의 구조나 유전체 막이 그 소자의 성능을 크게 좌우한다. 여기서 유전체 막은 신호선과 그라운드면 간의 전자파를 집중시켜주어 방사손실을 줄여주는 역할을 한다. 유전체 막의 두께는 소자의 전체적인 크기를 결정하는 요인이 된다. 이는 유전체 막의 두께가 감소할 경우 50 $\Omega$ 임피던스 매칭을 위해 막 위에 형성되는 소자들의 선폭도 동시에 줄여야 하므로 소자의 소형화도 가능 하여진다. 하지만 유전체 막의 두께가 감소할 경우 전자파가 유전체 막에 집중되지 못하여 방사손실이 커지게 되고 소자의 성능이 저하된다. 이런 점을 고려할 때 소자의 소형화를 만족시키면서 동시에 소자의 성능을 유지할 수 있는 유전체 막의 최적화 두께에 대한 연구가 필요하다. 볼 연구에서는 유전체 막의 최적화 두께를 제시하기 위해 대표적 마이크로파 소자인 Edge-Coupled Filter에 대하여 3-D Electromagnetic Simulator로 설계하고 유전체 막의 두께와 Filter 성능 간의 관계를 연구하였다. Filter의 성능은 유지하도록 하면서 유전체 막의 두께를 감소시켜 나간 결과, 약 30 ~ 40 ${\mu}m$ 의 최적화 두께를 얻을 수 있었다. 한편 30 ~ 40 ${\mu}m$ 두께의 후막 공정을 고려할 때 기존의 성막공정으로는 성막시간, 공정의 난이도, 공정온도 등의 면에서 난점이 존재하며 이러한 점들을 극복할 수 있는 Aerosol Deposition Method의 적용 가능성에 대해서 연구하였다.

  • PDF

A Study on Distinct Element Modelling of Dilatant Rock Joints (팽창성 암석절리의 개별요소 모델링에 관한 연구)

  • 장석부;문현구
    • Tunnel and Underground Space
    • /
    • v.5 no.1
    • /
    • pp.1-10
    • /
    • 1995
  • The behavior of a jointed rock mass depends mainly on the geometrical and mechanical properties of joints. The failure mode of a rock mass and kinematics of rock blocks are governed by the orientation, spacing, and persistence of joints. The mechanical properties such as dilation angle, shear strength, maximum closure, strength of asperities and friction coeffiient play important roles on the stability and deformation of the rock mass. The normal and shear behaviour of a joint are coupled due to dilation, and the joint deformation depends also on the boundary conditions such as stiffness conditons. In this paper, the joint constitutive law including the dilatant behaviour of a joint is numerically modelled using the edge-to-edge contact logic in distinct element method. Also, presented is the method to quantify the input parameters used in the joint law. The results from uniaxial compression and direct shear tests using the numeical model of the single joint were compared to the analytic results from them. The boundary effect on the behaviour of a joint is verified by comparing the results of direct shear test under constant stress boundary condition with those under constant stiffness boundary condition. The numerical model developed is applied to a complex jointed rock mass to examine its performance and to evaluate the effect of joint dilation on tunnel stability.

  • PDF

Improvement of the Microstrip Patch Bandpass Filter using Interdigital Couping Structure and Embeded Slot (깍지 낀 결합 구조와 슬롯을 이용한 마이크로스트립 패치 대역통과필터의 특성 개선)

  • Kim, Hyun;Lim, Hyun-Jun;Yoon, Hyun-Bo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.4
    • /
    • pp.487-493
    • /
    • 2001
  • In this paper, A new microstrip bandpass filter is proposed. The novelty of the proposed structures is to use a interdigital capacitor and embeded slot that are fanned on a patch resonator such that its insertion loss and size can be significantly reduced simultaneously. As a result, it is found that the resonant frequency of patch filter designed at 5 GHz is decreased to 1.8946 GHz and the insertion loss is reduced from -2.168 dB to -0.379 dB. This proposed filter has small size and low insertion loss in comparison with the conventional parallel edge coupled bandpass filter.

  • PDF

THIN FILM TECHNOLOGIES RELATED TO THE HIGH T$_{c}$ SUPERCONDUCTORS

  • Ri, Eui-Jae
    • Journal of Surface Science and Engineering
    • /
    • v.29 no.5
    • /
    • pp.415-423
    • /
    • 1996
  • Thin film technologies for fabricating SQUIDs involve etching and deposition procedures with the proper substrate materials and $YBa_2Cu_3O_{7-d}$ (YBCO) as the high $T_c$ superconductor. YBCO were prepared on various substrates of MgO, $SrTiO_3$, and $LaAlO_3$ by using off-axis magnetron sputtering methods and annealing in-situ. The parameters of film fabrication processes had been optimized to yield good quality films in terms of the critical temperature $T_c$ and the critical current density $J_c$. The optimized processes yielded $T_C$>90K along with $J_c$>$10_6A$$extrm{cm}^2$ at 77K and>$2\times10_7A/Cm^2$ at 5K. We fabricated step-edge type dc-SQUIDs and directly coupled magnetometers, producing step edges on MgO(100) substrates by etching with Ar-ion beam, depositing YBCO material on them, then patterning them by using ion-milling technique. Circuitizing washer-shape SQUIDs to possess a pair of step-edge junctions of 2-5$\mu$ line width with a high angle>$50^{\circ}C$ , we examined their I-V characteristics thoroughly and Shapiro steps clearly as we irradiate microwaves of 8-20 GHz frequency.

  • PDF

Laminar Lifted Methane Jet Flames in Co-flow Air

  • Sapkal, Narayan P.;Lee, Won June;Park, Jeong;Lee, Byeong Jun;Kwon, Oh Boong
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.83-86
    • /
    • 2015
  • The Laminar lifted methane jet flames diluted with helium and nitrogen in co-flow air have been investigated experimentally. The chemiluminescence intensities of $OH^{\ast}$ and $CH_2O^{\ast}$ radicals and the radius of curvature for tri-brachial flame were measured using an intensified charge coupled device (ICCD) camera, monochromator and digital video camera. The product of $OH^{\ast}$ and $CH_2O^{\ast}$ is used as a excellent proxy of heat release rate. These methane jet flames could be lifted in buoyancy and jet dominated regimes despite the Schmidt number less than unity. Lifted flames were stabilized due to buoyancy induced convection in buoyancy-dominated regime. It was confirmed that increased $OH^{\ast}$ and $CH_2O^{\ast}$ concentration caused an increase of edge flame speed via enhanced chemical reaction in buoyancy dominated regime. In jet momentum dominated regime lifted flames were observed even for nozzle exit velocities much higher than stoichiometric laminar flame speed. An increase in radius of curvature in addition to the increased $OH^{\ast}$ and $CH_2O^{\ast}$ concentration stabilizes such lifted flames.

  • PDF

Comparative analysis of modeling approaches for sulfide-induced corrosion of copper disposal canisters in a 3-dimensional domain

  • Heejae Ju;Nakkyu Chae;Jung-Woo Kim;Hong Jang;Sungyeol Choi
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.3385-3396
    • /
    • 2024
  • Copper canisters are commonly employed to contain HLW for the long-term, making it crucial to understand how corrosion affects the canister. This study conducted a comparative analysis of two widely used calculation methods for modeling canister corrosion within a 3-D DGR domain. The first method, termed transport-limited corrosion, assumes an immediate sulfide-copper reaction and has been traditionally used due to its conservative nature. The second method, known as the potential-limited corrosion, considers coupled redox reactions at the canister surface and computes corrosion rates through anodic current density. From the results, we found that the edge of the canister geometry and the omission of electrochemical kinetics impose critical limitations with the transport-limited corrosion method. These limitations include the singularity problem, excessive sensitivity to the curvature of the canister's edge, and an inability to evaluate the distribution of corrosion rate over the canister surface as a function of the sulfide concentration. On the other hand, the potential-limited corrosion method avoided the limitations found in the other method. Since the factors relating to these limitations are critical to the design and optimization of the copper disposal canister, careful consideration when selecting appropriate calculation methods for corrosion will be required.

Calculation of two-dimensional incompressible separated flow using parabolized navier-stokes equations (부분 포물형 Navier-Stokes 방정식을 이용한 비압축성 이차원 박리유동 계산)

  • 강동진;최도형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.755-761
    • /
    • 1987
  • Two-Dimensional incompressible laminar boundary layer with the reversed flow region is computed using the parially parabolized Navier-Stokes equations in primitive variables. The velocities and the pressure are explicity coupled in the difference equation and the resulting penta-diagonal matrix equations are solved by a streamwise marching technique. The test calculations for the trailing edge region of a finite flat plate and Howarth's linearly retarding flows demonstrate that the method is accurate, efficient and capable of predicting the reversed flow region.

A coupled Ritz-finite element method for free vibration of rectangular thin and thick plates with general boundary conditions

  • Eftekhari, Seyyed A.
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.655-670
    • /
    • 2018
  • A coupled method, that combines the Ritz method and the finite element (FE) method, is proposed to solve the vibration problem of rectangular thin and thick plates with general boundary conditions. The eigenvalue partial differential equation(s) of the plate is (are) first reduced to a set of eigenvalue ordinary differential equations by the application of the Ritz method. The resulting eigenvalue differential equations are then reduced to an eigenvalue algebraic equation system using the finite element method. The natural boundary conditions of the plate problem including the free edge and free corner boundary conditions are also implemented in a simple and accurate manner. Various boundary conditions including simply supported, clamped and free boundary conditions are considered. Comparisons with existing numerical and analytical solutions show that the proposed mixed method can produce highly accurate results for the problems considered using a small number of Ritz terms and finite elements. The proposed mixed Ritz-FE formulation is also compared with the mixed FE-Ritz formulation which has been recently proposed by the present author and his co-author. It is found that the proposed mixed Ritz-FE formulation is more efficient than the mixed FE-Ritz formulation for free vibration analysis of rectangular plates with Levy-type boundary conditions.

Inductively coupled plasma etching of SnO2 as a new absorber material for EUVL binary mask

  • Lee, Su-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.124-124
    • /
    • 2010
  • Currently, extreme ultraviolet lithography (EUVL) is being investigated for next generation lithography. EUVL is one of competitive lithographic technologies for sub-22nm fabrication of nano-scale Si devices that can possibly replace the conventional photolithography used to make today's microcircuits. Among the core EUVL technologies, mask fabrication is of considerable importance due to the use of new reflective optics having a completely different configuration compared to those of conventional photolithography. Therefore, new materials and new mask fabrication process are required for high performance EUVL mask fabrication. This study investigated the etching properties of SnO2 (Tin Oxide) as a new absorber material for EUVL binary mask. The EUVL mask structure used for etching is SnO2 (absorber layer) / Ru (capping / etch stop layer) / Mo-Si multilayer (reflective layer) / Si (substrate). Since the Ru etch stop layer should not be etched, infinitely high selectivity of SnO2 layer to Ru ESL is required. To obtain infinitely high etch selectivity and very low LER (line edge roughness) values, etch parameters of gas flow ratio, top electrode power, dc self - bias voltage (Vdc), and etch time were varied in inductively coupled Cl2/Ar plasmas. For certain process window, infinitely high etch selectivity of SnO2 to Ru ESL could be obtained by optimizing the process parameters. Etch characteristics were measured by on scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analyses. Detailed mechanisms for ultra-high etch selectivity will be discussed.

  • PDF

A multisource image fusion method for multimodal pig-body feature detection

  • Zhong, Zhen;Wang, Minjuan;Gao, Wanlin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4395-4412
    • /
    • 2020
  • The multisource image fusion has become an active topic in the last few years owing to its higher segmentation rate. To enhance the accuracy of multimodal pig-body feature segmentation, a multisource image fusion method was employed. Nevertheless, the conventional multisource image fusion methods can not extract superior contrast and abundant details of fused image. To superior segment shape feature and detect temperature feature, a new multisource image fusion method was presented and entitled as NSST-GF-IPCNN. Firstly, the multisource images were resolved into a range of multiscale and multidirectional subbands by Nonsubsampled Shearlet Transform (NSST). Then, to superior describe fine-scale texture and edge information, even-symmetrical Gabor filter and Improved Pulse Coupled Neural Network (IPCNN) were used to fuse low and high-frequency subbands, respectively. Next, the fused coefficients were reconstructed into a fusion image using inverse NSST. Finally, the shape feature was extracted using automatic threshold algorithm and optimized using morphological operation. Nevertheless, the highest temperature of pig-body was gained in view of segmentation results. Experiments revealed that the presented fusion algorithm was able to realize 2.102-4.066% higher average accuracy rate than the traditional algorithms and also enhanced efficiency.