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Abstract 
 

The multisource image fusion has become an active topic in the last few years owing to its 
higher segmentation rate. To enhance the accuracy of multimodal pig-body feature 
segmentation, a multisource image fusion method was employed. Nevertheless, the 
conventional multisource image fusion methods can not extract superior contrast and abundant 
details of fused image. To superior segment shape feature and detect temperature feature, a 
new multisource image fusion method was presented and entitled as NSST-GF-IPCNN. 
Firstly, the multisource images were resolved into a range of multiscale and multidirectional 
subbands by Nonsubsampled Shearlet Transform (NSST). Then, to superior describe 
fine-scale texture and edge information, even-symmetrical Gabor filter and Improved Pulse 
Coupled Neural Network (IPCNN) were used to fuse low and high-frequency subbands, 
respectively. Next, the fused coefficients were reconstructed into a fusion image using inverse 
NSST. Finally, the shape feature was extracted using automatic threshold algorithm and 
optimized using morphological operation. Nevertheless, the highest temperature of pig-body 
was gained in view of segmentation results. Experiments revealed that the presented fusion 
algorithm was able to realize 2.102-4.066% higher average accuracy rate than the traditional 
algorithms and also enhanced efficiency. 
 
 
Keywords: Nonsubsampled shearlet transform, Gabor filter, modified spatial frequency, 
pulse coupled neural network, multimodal pig-body feature 
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1. Introduction 

Nowadays, to accurately detect the health of animals, the research on multimodal feature 
description algorithm of animals has been an active topic. In this paper, the shape and 
temperature of pig-body are selected as the research objects.  
 

1.1 Pig-body Shape Detection 
The current pig-body shape detection systems capture pig-bodies in controlled environment. 
Based on controlled conditions, the pig-body detection algorithm was presented in view of 
visible (VI) images, which realized high accuracy [1]. Nevertheless, it can not usefully detect 
pig-body shape in dimmer situation, which are shown in Fig. 1(e)(g). Since targets could be 
discovered in infrared (IR) images in view of dimmer situation, the animal-body detection was 
realized in view of infrared images [2]. Nevertheless, owing to the influence of visual angle 
and situation, it can not detect ears usefully in variable illumination and as revealed in Fig. 
1(b)(d)(f)(h). Under variable illumination situations, the detection results were various in ears, 
legs and tails in multisource images, as revealed in Fig. 1. Accordingly, to enhance the 
detection of pig-body shape, the multisource image fusion can offer effective information 
[3][4]. 
 

 
Fig. 1. The detection results of pig-body in view of multisource images under variable environments 

(a)-(d)clearer environments (e)-(h)dimmer environments 
 

1.2 Pig-body Temperature Detection 
Owing to the characteristics of non-contact, rapid detection, non-destructive, infrared thermal 
image technology was used to obtain the temperature of pig-body [5][6][7]. To prove the 
characteristics of infrared images, a method of measuring pig head temperature was proposed 
based on infrared images [8]. A temperature control method of pigsty was proposed based on 
data distribution in infrared image, which can meet the temperature comfort of pigs [9]. At 
present, the highest temperature of pig-body was located in its ears [10], however, due to 
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uncontrollable behaviors of pigs, the highest temperature was located in somewhere else. To 
ensure the accurate detection of highest temperature, the temperature was detected in view of 
accurate shape detection in this paper. 
 

1.3 Multi-source Image Fusion 
Since source image resolution resembled the aspect of a human visual system [11], transform 
domain-based fusion methods were widely applied, such as DCT [12][13], CT [14] and ST 
[15]. Nevertheless, they could be prone to arouse Gibbs phenomenon in fused image owing to 
sampling operator. To solve the above shortcomings, an image fusion method was proposed 
based on CT, which namely nonsubsampled contourlet transform (NSCT) [16]. However, this 
algorithm had low efficiency.  

To enhance the above shortcomings, a modified shearlet transform method was proposed, 
which named NSST [17]. To enhance the accuracy of fusion algorithm, a new multisource 
image fusion algorithm was presented for pig-body shape and temperature detection in NSST 
domain, entitled as NSST-GF-IPCNN. Firstly, a new multisource image fusion algorithm is 
realized to detect pig-body shape and temperature characteristics. Then, the fused images are 
segmented using automatic threshold algorithm and morphological operation. Next, the 
temperature of pig-bodies is test in view of segmentation results. Finally, the experiments 
demonstrate that the presented fusion algorithm has a superior result in shape segmentation 
and realizes a higher segmentation rate. The flow diagram of presented algorithm is revealed 
in Fig. 2.  

Generally, the contributions of our presented framework are summarized as following: 
 In the low-frequency subbands, to construct a remarkable measure algorithm, the local 

features of multisource images are obtained using even-symmetrical Gabor filter. 
Then, an available fusion rule of low-frequency subbands is presented in view of 
multisource images. 

 In the high-frequency subbands, to superior describe edge information, 
high-frequency features are represented using an improved pulse coupled neural 
network. Then, the maximum strategy is employed to enhance the segmentation of 
pig-body shape feature. 

 The presented segmentation framework can achieve superior detection rate than other 
current algorithms. 

The structure of our paper is: methodology is proposed in section 2, the presented method 
is introduced in section 3, experiment results and discussion are reported in section 4, 
conclusion and future works are provided in section 5.  
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Fig. 2. Flow diagram of the presented detection framework 

2. Methodology 

2.1 Multi-source Image Registration 
In this paper, FLIR Tools was used to obtain visible and infrared images of pig-body. Owing 
to the problem of noise and a small amount of misregistration, multi-source images were 
registered by traditional method, which was shown as: 
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where (x1, y1) is coordinates of pixels in infrared image, (x2, y2) is coordinates of pixels in 
visible image, sx and sy are scale parameters in x and y directions, respectively. 
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sincos is rotation matrix, tx and ty are translation parameters in x and y directions, 

respectively. 
Since the space distribution of infrared lens and digital camera lens is closer on FLIR C2, 

the rotation angle and translation parameters can be ignored, so the above formula should be 
simplified as following: 
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To improve the accuracy of registration, RANSAC algorithm [18] was used to estimate the 
optimal scale parameters. 

2.2 Nonsubsampled Shearlet Transform 
Owing to higher implementation efficiency and better direction description ability, the 
multisource images were resolved into multiscale and multidirectional subbands by the 
nonsubsampled pyramid (NSP) and the shear filters (SF). Firstly, one low-frequency subband 
and one high-frequency subband were formed by NSP in each resolution level. The multiscale 
subbands were obtained by iteratively resolving the low-frequency subbands to obtain the 
singularities in multisource images. If the number of resolution level was m, there were m+1 
subbands could be obtained by NSP, whose sizes were all the same as source images. Then, 
the high-frequency subbands in each resolved level were resolved by SF at n orientations to 
obtain 2n directional subbands [19][20]. The resolution processing of nonsubsampled shearlet 
transform (NSST) is revealed in Fig. 3.  

The affine function of shearlet transform systems based on 2D images are defined as 
following: 
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where )( 22 RL∈ϕ  , j, l, k are scale, direction and spatial position parameter, respectively. For 
1,0,,122,0 2 =∈−≤≤−≥ dZklj jj , the shearlet transform of φ is calculated and shown as: 
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where )(
,,ˆ d
kljϕ  is the Fourier transform of shearlet, )2( 2 εjV −  is the function of scale, )()(

, εd
ljW  is the 

function of trapezoidal window. A is the scaling matrix for multi-scale decomposition, S is the 
shear matrix for directional partitions, |det S|=1. In this paper, m=3, n= 22, 22, 23 in the three 
levels, respectively, j=32, 32, 16 in the three levels, respectively. 

For each a>0, s∈R, A and S are presented as following: 
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where a=4, s=1. 

 
Fig. 3. The resolutions of NSST 
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2.3 Gabor Feature Extraction 
Owing to the better representation of texture feature [21], the low-frequency subbands were 
represented by even-symmetrical Gabor filters. Firstly, the Gabor filter with eight directions 
(0°, 22.5°, 45°, 67.5°, 90°, 112.5°, 135° and 157.5°) [22] was conducted, which represent G{i}. 
The expression of even-symmetrical Gabor filter are revealed as: 
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the mth direction, i=8, γ and σ are the length-width radio and the scale of envelope, 
respectively. Since multisource images has various curve structure, various parameters were 
employed, σIR =3 and σVI =6, respectively. 

Then, the magnitude features with multi-orientation were extracted by convolution with 
Gabor filter, the formula is shown as: 
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where I(x, y) is IR or VI image, ⊗ is convolution operator. 

2.4 Improved Dual-channel Pulse Coupled Neural Network 
As the development of artificial neural network, pulse coupled neural network (PCNN) was a 
model based on visual information system of cat, so it could restore detailed and edge 
information of source images and obtain better fusion effect [23][24]. However, uni-channel 
PCNN could only describe the details in uni-source image, and the linking strength was all the 
same in any part of image. Therefore, an improved dual-channel PCNN model was proposed 
in this paper. The dual-channel PCNN model included three parts: received field, modulation 
domain and pulse generator, as shown in Fig. 4. 

The received part was shown as: 
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where 1
ijS  and 2

ijS denote the pixel values of source images, which are viewed as the external 
stimuli of model. 1

ijF and 2
ijF  are two feeding inputs. Lij and Yij represent the linking input and 

the external output of neurons, respectively. 
The modulation part was shown as: 
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where Uij is the internal activity of neurons, 1

ijβ and 2
ijβ  denote the linking strength, which 

describe the strength response of different feature areas in source images. 
The pulse generator part was shown as: 
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where θij is the threshold function, Vθ denotes the threshold of fired neuron. Tij represents the 
number of iterations. In this paper, Vθ =20,∆=0.01. To enhance the adaptivity of dual-channel 
PCNN, modified spatial frequency (MSF) is adopted to determine 1

ijβ and 2
ijβ , due to the 

details description ability of MSF [25].  
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where IX represents VI or IR images, RF, CF, MDF and ADF represent the spatial frequency of 
horizontal, vertical, main-diagonal and auxiliary-diagonal directions, respectively. 

 
Fig. 4. The dual-channel PCNN model based on modified spatial frequency 

3. The Proposed Method 
The presented detection method aimed to enhance the accuracy rate of shape and temperature 
and its steps could be summarized as following: 

1) NSST was adopted to obtain multi-scale and multi-direction decomposition of 
multisource images. 

2) To usefully fuse low-frequency subbands and high-frequency subbands, various fusion 
rules were devised. The maximum of Gabor energy maps was used as the fusion rule of 
low-frequency subbands, and improved dual-channel PCNN model was used to fuse 
the high-frequency subbands. 

3) The fused images were reconstructed by inverse NSST. 
4) According to the fusion results, the shape was extracted by automatic threshold 

algorithm and optimized by morphological operation and then the temperature was 
extracted in view of  segmentation. 

3.1 The Fusion Rule of Low-frequency Subbands 
The low-frequency subbands describe the main energy feature. To usefully represent 
fine-scale texture feature in low-frequency subbands, the fusion steps are as following: 

Step 1: The Gabor energy maps were obtained in view of Gabor magnitude feature. 
)2)))^,}({(((),( yxiMabsMAXyxE =

        
                                         (17) 
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where E(·) is the Gabor energy map, M{i}(·) is magnitude features with the ith orientation. 
Step 2: The maximum fusion rule was applied in view of Gabor energy feature with 

multi-orientation. 
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where IR
LE and VI

LE are Gabor energy map of multisource low-frequency subbands, 
respectively. 

3.2 The Fusion Rule of High-frequency Subbands 
The high-frequency subbands represent the coarse-scale texture and edge features. To superior 
describe features of coarse-scale texture and edge, an improved dual-channel PCNN in view of 
MSF was employed. The fusion steps of high-frequency subbands were as following: 

Step1: The parameters of improved model were initialized and the MSF of each pixel was 
computed and viewed as linking strength, as shown in Eqs. (15)-(16). 

Step2: Eqs. (8)-(14) were iteratively computed until all the neurons were activated. 
Step3: The maximum was selected as fused high-frequency subbands and shown as 

following: 
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and spatial parameter, respectively. 
 

 
Fig. 5. The homemade database (a) VI images (b) IR images 

 4. Experimental Results and Discussion 
To prove the performance of the presented fusion algorithm, a homemade database was built 
by FLIR C2, which included 24 image pairs, as revealed in Fig. 5. Nevertheless, several 
experiments were designed. In this paper, seven objective metrics are employed to assess the 
fusion results, which are average gradient (AG) [26], standard deviation (SD) [27], spatial 
frequency (SF) [28], information entropy (IE) [29], average pixel intensity (API) [13], 
similarity of structure information measure (SSIM) [30] and accuracy (Acc) [31], respectively. 
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4.1 Performance of Presented Fusion Method 
To prove the performance of the presented fusion algorithm, 24 multisource image pairs were 
considered in view of variable situations, four of them and fused images in view of  presented 
model are revealed in Fig. 6(a)-(c). It was obviously showed that the fused pig-body images 
resembled VI images. Nevertheless, the visual effects of VI, IR, and the fused images were 
also proved by calculating AG, API, IE, SD, SF, and as revealed in Table 1. Besides, the 
comparative results of IE and SD are revealed in Fig. 6(d)-(e), which depict that higher IE and 
SD were extracted by fused images. They also reflected that the presented fusion algorithm 
had a superior enhancement in abundance and contrast of fused images. 
 

 
 

Fig. 6. The comparable results (a) VI image (b) IR image (c) Fused image (d) comparison of IE (e) 
comparison of SD 

 
 

Table 1. Performance on presented fusion algorithm in variable situations 

Situations Images Performance  
AG API IE SD SF 

#1 
VI 7.430 8.317 7.569 10.163 8.763 
IR 1.288 1.835 3.690 5.847 5.057 

Fused 11.976 12.310 8.460 13.019 12.961 

#2 
VI 4.193 5.003 6.757 7.212 5.815 
IR 2.092 2.731 4.879 6.513 5.424 

Fused 7.584 8.953 7.860 10.064 8.616 

#3 
VI 7.181 7.135 6.587 10.538 8.798 
IR 1.738 2.925 4.638 8.900 6.722 

Fused 10.428 12.084 8.256 15.851 14.075 

#4 
VI 6.276 7.513 6.746 9.923 8.695 
IR 0.638 0.834 2.719 3.127 2,490 

Fused 9.890 10.679 8.180 14.400 13.374 
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4.2 Fusion Results of Presented Algorithm 
The performance of the presented multi-source image fusion algorithm was assessed 
according to several experiments. To prove the performance of fusion algorithm, four 
multisource image pairs in variable illumination were considered and revealed in Fig. 7(a)-(b). 
Furthermore, the presented fusion algorithm was parallel with seven existing algorithms, 
which entitled, DWT [32][33], DCT [34][35], CT [36], NSCT [37], NSST [38][39], 
NSCT-PCNN [40], NSST-PCNN [41]. The main difference among presented algorithm and 
other considered algorithms were revealed in Table 2. The final fused images in view of 
variable situations were revealed in Fig. 7(c)-(i). It reveals that the presented algorithm has 
some superiorities in the visual effect and clearly describes the pig-body regions. Besides, it is 
also goodness to the other seven image fusion algorithms in objective assessments, as revealed 
in Table 3. To compare the performance of various multisource fusion algorithms, the 
objective assessment results were described in scatter plots and revealed in Fig. 8. This also 
reveals that owing to the superior representation of Gabor feature and IPCNN, the presented 
algorithm offered a superior enhancement in visual effect, as well as, the objective assessment 
in view of variable situations.  
 

Table 2. The difference among fusion methods  
Fusion methods Low-frequency subbands High-frequency subbands 

The proposed method Gabor filter with even-symmetry IPCNN(MSF+PCNN) 
NSST—PCNN PCNN PCNN 

NSST spike cortical model (SCM) spike cortical model (SCM) 
NSCT—PCNN PCNN PCNN 

NSCT maximum entropy gradient feature 
CT maximum spatial frequency maximum spatial frequency 

DCT maximum spatial frequency maximum spatial frequency 
DWT maximum directive contrast  maximum directive contrast  

 
 

#1

#2

#3

#4

 
Fig. 7. The fusion results of various algorithms in view of variable situations (a) VI image (b) IR image 

(c) DWT (d) DCT (e) CT (f) NSCT (g) NSCT-PCNN (h) NSST (i) NSST-PCNN (j) Proposed 
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Fig. 8. The comparison of various algorithms with objective assessments in view of variable situations 

(a)-(b) clear environment (c)-(d) dim environment 
 

Table 3. The comparable results of various fusion algorithms in objective assessment  

Situa
tion 

Evalu
ation 

Fusion methods 

DWT DCT CT NSCT NSCT-PCN
N NSST NSST-PCN

N Proposed 

#1 

AG 4.852 5.800 4.880 10.953 11.414 8.962 7.545 11.976 
API 5.274 6.444 5.339 11.572 12.292 9.457 8.300 12.310 
IE 6.973 7.257 7.050 8.190 8.252 7.892 7.693 8.460 
SD 9.528 9.748 8.137 12.966 12.770 12.310 13.045 13.049 
SF 8.139 9.442 7.396 12.932 12.409 10.652 12.382 12.961 

SSIM 0.279 0.214 0.364 0.375 0.382 0.380 0.380 0.405 

#2 

AG 3.023 3.747 3.108 6.553 6.942 5.410 5.080 7.584 
API 3.619 4.653 3.804 7.506 8.374 6.153 6.222 8.953 
IE 6.294 6.571 6.418 7.466 7.555 7.180 7.121 7.880 
SD 8.792 8.528 8.105 9.788 10.335 9.193 9.009 10.464 
SF 8.353 7.917 7.738 8.178 8.321 8.089 8.375 8.616 

SSIM 0.399 0.311 0.395 0.514 0.550 0.496 0.501 0.558 

#3 

AG 5.385 6.368 5.398 9.410 12.248 10.092 8.019 12.274 
API 5.943 7.162 5.974 10.071 13.459 10.854 9.049 14.710 
IE 7.080 7.339 7.180 7.953 8.352 8.031 7.735 8.549 
SD 11.387 10.729 9.183 12.258 15.247 14.422 14.606 15.473 
SF 10.332 9.916 8.617 11.937 14.149 12.798 13.765 14.804 

SSIM 0.405 0.318 0.388 0.518 0.602 0.553 0.537 0.684 

#4 

AG 4.528 4.756 4.715 8.952 9.164 7.823 6.692 9.890 
API 5.124 5.557 5.372 9.916 10.485 8.638 7.751 10.679 
IE 6.774 6.802 6.994 7.831 7.900 7.609 7.460 8.180 
SD 10.278 10.576 10.477 13.778 13.921 13.780 13.497 14.400 
SF 8.658 10.014 9.718 12.782 12.912 12.854 12.206 13.374 

SSIM 0.599 0.309 0.590 0.620 0.675 0.657 0.672 0.761 
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Table 4. Computation times of various fusion methods 

 Situa
tions 

Fusion methods 

DWT DCT CT NSCT NSCT-PCNN NSST NSST-PCNN Proposed 

Time

/s 

#1 0.971 1.056 1.096 21.749 34.420 6.602 10.027 6.745 
#2 1.087 1.063 0.881 21.631 34.775 5.921 9.755 6.835 
#3 1.239 1.078 1.092 23.396 36.441 5.920 10.526 6.929 
#4 1.032 1.048 0.809 21.228 34.216 5.457 10.066 6.816 

To prove the performance of the presented fusion algorithm in homemade database, the 
comparative results were described in broken line as revealed in Fig. 9. The x-axis of Fig. 9 
described the number of multi-source image pairs. It reveals that the fused image quality is 
superior among 8 fusion algorithms. Furthermore, the running times of fusion algorithms are 
revealed in Table 4. Compared with NSCT-PCNN, NSST-PCNN and NSCT, the presented 
fusion algorithm had less computation complexity. 
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Fig. 9. The comparison of various algorithms with objective assessments 

4.3 Pig-body Detection Based on Presented Fusion Method  
To testify the performance of pig-body detection in view of presented fusion method, 24 
pig-body image pairs were processed to acquire 192 fused images with 8 various fusion 
algorithms as mentioned above. Then, pig-body areas were acquired by automatic threshold 
algorithm. To optimize the segmentation results, morphological processing was adopted to 
remove holes and noise. To evaluate the performance of detection results in variable situations, 
the multisource images with variable illumination were segmented in Fig. 10(a)-(b) and Fig. 
11(a)-(b), respectively. The binarization of fused images with variable environments in view 
of various fusion algorithms were revealed in Fig. 10(c)-(i) and Fig. 11(c)-(i). The presented 
pig-body segmentation algorithm realized higher segmentation accuracy than all the 
considered fusion algorithms, as revealed in Table 5. As the table, the average performance of 
the presented segmentation was 98.389%, which is 2.102 —4.066% higher than other 
considered algorithms. To test the detection performance of presented algorithm, the results 
were described in broken line and revealed in Fig. 12. It reveals that the presented detection 
algorithm realized highest detection rate among 8 various algorithms. 
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Fig. 10. The binarization results in view of clear environment (a) IR image (b) VI image (c) DWT (d) 
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Fig. 11. The binarization results in view of dim environment (a) IR image (b) VI image (c) DWT (d) DCT 
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Fig. 12. The comparable results of detection accuracy 

 

4.4 The Detection Results of Pig-body Temperature  
To remove the influence of surrounding temperature on pig-body temperature detection, the 
highest temperature was obtained in view of shape segmentation and the pixels of infrared 
image. Firstly, the shape segmentation results were standardized and added with infrared 
image. Then, the highest temperature was gained by comparing pixel by pixel. Finally, the 
location of highest temperature in variable environments were extracted by FLIR Tools, as 
revealed in Fig. 13. To detect the health degree of pig, the highest temperature  was described 
in broken line as revealed in Fig. 14. It reveals that the highest temperature is all in the normal 
temperature range. 
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Fig. 13. The detection and position of highest temperature in variable environments 

 
Table 5. The comparable accuracy of the presented detection method 

 Situa
tions 

Fusion methods 

DWT DCT CT NSCT NSCT-PCNN NSST NSST-PCNN Proposed 

Accu

racy 

(%) 

#1 94.719 95.241 96.717 96.999 95.654 96.925 96.904 98.934 
#2 95.209 95.415 96.012 96.511 95.948 96.412 97.225 98.788 
#3 93.316 94.064 94.947 95.102 94.200 94.998 95.114 97.528 
#4 94.049 94.691 95.541 95.791 94.513 95.777 95.904 98.304 
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Fig. 14. The highest temperature of pig-body  

5. Conclusion and Future Works 
A new multisource image fusion method was presented for pig-body shape and temperature 
detection, which entitled NSST-GF-IPCNN. First, NSST was employed to resolve 
multisource images into a range of multi-scale and multi-directional sub-bands. Then, 
even-symmetrical Gabor filter and IPCNN in view of MSF were employed to fuse low and 
high-frequency subbands, respectively. Next, the fused coefficients were fused into final 
fusion image. Finally, the binarizations were extracted using automatic threshold algorithm 
and morphological processing. Besides, the highest temperature was gained in view of binary 
images. The experiments reveal that the presented fusion algorithm had a better performance 
in enhancing the average segmentation rate (98.389%) in view of pig-body images with 
variable environments, which is 2.102—4.066% higher than other considered algorithms.  
This work mainly focused on enhancing the issue of pig-body shape and temperature detection 
under variable environments. Some parameters of the presented method were not selected 
automatically. Future studies should concentrate on the adaptivity of fusion methods.  
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