• Title/Summary/Keyword: edge classification

Search Result 256, Processing Time 0.022 seconds

A New Method for Classification of Structural Textures

  • Lee, Bongkyu
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.1
    • /
    • pp.125-133
    • /
    • 2004
  • In this paper, we present a new method that combines the characteristics of edge in-formation and second-order neural networks for the classification of structural textures. The edges of a texture are extracted using an edge detection approach. From this edge information, classification features called second-order features are obtained. These features are fed into a second-order neural network for training and subsequent classification. It will be shown that the main disadvantage of using structural methods in texture classifications, namely, the difficulty of the extraction of texels, is overcome by the proposed method.

Edge-Preserving Image Restoration Using Block-Based Edge Classification (블록기반의 윤곽선 분류를 이용한 윤곽선 보존 영상복원 기법)

  • 이상광;호요성
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.33-36
    • /
    • 1998
  • Most image restoration problems are ill-posed and need to e regularized. A difficult task in image regularization is to avoid smoothing of image edges. In this paper, were proposed an edge-preserving image restoration algorithm using block-based edge classification. In order to exploit the local image characteristics, we classify image blocks into edge and no-edge blocks. We then apply an adaptive constrained least squares (CLS) algorithm to eliminate noise around the edges. Experimental results demonstrate that the proposed algorithm can preserve image edges during the regularization process.

  • PDF

3D Mesh Simplification Using Subdivided Edge Classification (세분화된 에지 분류 방법을 이용한 삼차원 메쉬 단순화)

  • 장은영;호요성
    • Proceedings of the IEEK Conference
    • /
    • 2000.11c
    • /
    • pp.109-112
    • /
    • 2000
  • Many applications in computer graphics require highly detailed complex models. However, the level of detail may vary considerably according to applications. It is often desirable to use approximations in place of excessively detailed models. We have developed a surface simplification algorithm which uses iterative contractions of edges to simplify models and maintains surface error approximations using a quadric metric. In this paper, we present an improved quadric error metric for simplifying meshes. The new metric, based on subdivided edge classification, results in more accurate simplified meshes. We show that a subdivided edge classification captures discontinuities efficiently. The new scheme is demonstrated on a variety of meshes.

  • PDF

Edge-Preserving Algorithm for Block Artifact Reduction and Its Pipelined Architecture

  • Vinh, Truong Quang;Kim, Young-Chul
    • ETRI Journal
    • /
    • v.32 no.3
    • /
    • pp.380-389
    • /
    • 2010
  • This paper presents a new edge-protection algorithm and its very large scale integration (VLSI) architecture for block artifact reduction. Unlike previous approaches using block classification, our algorithm utilizes pixel classification to categorize each pixel into one of two classes, namely smooth region and edge region, which are described by the edge-protection maps. Based on these maps, a two-step adaptive filter which includes offset filtering and edge-preserving filtering is used to remove block artifacts. A pipelined VLSI architecture of the proposed deblocking algorithm for HD video processing is also presented in this paper. A memory-reduced architecture for a block buffer is used to optimize memory usage. The architecture of the proposed deblocking filter is verified on FPGA Cyclone II and implemented using the ANAM 0.25 ${\mu}m$ CMOS cell library. Our experimental results show that our proposed algorithm effectively reduces block artifacts while preserving the details. The PSNR performance of our algorithm using pixel classification is better than that of previous algorithms using block classification.

An Edge Detection Method by Using Fuzzy 2-Mean Classification and Template Matching

  • Kang, C.C.;Lee, P.J.;Wang, W.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1315-1318
    • /
    • 2004
  • Based on fuzzy 2-mean classification and template matching method, we propose a new algorithm to detect the edges of an image. In the algorithm, fuzzy 2-mean classification can classify all pixels in the mask into two clusters whatever the mask in the dark or light region; and template matching not only determines the edge's direction, but also thins the detected edge by a set of inference rules and, by the way, reduces the impulse noises.

  • PDF

An Edge Directed Color Demosaicing Algorithm Considering Color Channel Correlation (컬러 채널 상관관계를 고려한 에지 방향성 컬러 디모자이킹 알고리즘)

  • Yoo, Du Sic;Lee, Min Seok;Kang, Moon Gi
    • Journal of Broadcast Engineering
    • /
    • v.18 no.4
    • /
    • pp.619-630
    • /
    • 2013
  • In this paper, we propose an edge directed color demosaicing algorithm considering color channel correlation. The proposed method consists of local region classification step and edge directional interpolation step. In the first step, each region of a given Bayer image is classified as normal edge, pattern edge, and flat regions by using intra channel and inter channel gradients. Especially, two criteria and verification process for the normal edge and pattern edge classification are used to reduce edge direction estimation error, respectively. In the second step, edge directional interpolation process is performed according to characteristics of the classified regions. For horizontal and vertical directional interpolations, missing color components are obtained from interpolation equations based on intra channel and inter channel correlations in order to improve the performance of the directional interpolations. The simulation results show that the proposed algorithm outperforms conventional approaches in both objective and subjective terms.

A Study on Game Character Classification Based on Texture and Edge Orientation Feature (질감 및 에지 방향 특징에 기반한 게임 캐릭터 분류에 관한 연구)

  • Park, Chang-Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.6
    • /
    • pp.1318-1324
    • /
    • 2012
  • This paper proposes a novel method for Game character classification based on texture and edge orientation feature. The character dose not move(NPC) and move the character is classified. Classification of property within the character of straight line segments are used to extract features. First, the character inside edge feature extraction and then calculates EEDH, SSPD. The extracted attribute represents the energy of a particular direction. Thus, these properties were used to classify of NPC and Monster. The proposed method, the user can reduce the unnecessary time in the game.

Detection of Road Lane with Color Classification and Directional Edge Clustering (칼라분류와 방향성 에지의 클러스터링에 의한 차선 검출)

  • Cheong, Cha-Keon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.86-97
    • /
    • 2011
  • This paper presents a novel algorithm to detect more accurate road lane with image sensor-based color classification and directional edge clustering. With treatment of road region and lane as a recognizable color object, the classification of color cues is processed by an iterative optimization of statistical parameters to each color object. These clustered color objects are taken into considerations as initial kernel information for color object detection and recognition. In order to improve the limitation of object classification using the color cues, the directional edge cures within the estimated region of interest in the lane boundary (ROI-LB) are clustered and combined. The results of color classification and directional edge clustering are optimally integrated to obtain the best detection of road lane. The characteristic of the proposed system is to obtain robust result to all real road environments because of using non-parametric approach based only on information of color and edge clustering without a particular mathematical road and lane model. The experimental results to the various real road environments and imaging conditions are presented to evaluate the effectiveness of the proposed method.

Edge Pattern Classification Method for Efficient Line Detection (효율적인 직선 검출을 위한 에지 패턴 분류 방법)

  • Park, Sang-Hyun;Kim, Jong-Ho;Kang, Eui-Sung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.918-920
    • /
    • 2011
  • In this paper, a simple edge pattern classification method is proposed for detecting straight line segments in an image corrupted by impulse noise. Corrupted images have complicated edge patterns. To detect straight line from an complicated edge pattern, it is needed to simplify the entire edge. The proposed algorithm separates the entire edge into 4 directional partial edge patterns. Each line segment is separated from the partial edge image where several line segments are overlapped, and then the straight line is detected. The results of the experiments emphasize that the proposed algorithm is simple but accurate.

  • PDF

Texture Classification Algorithm for Patch-based Image Processing (패치 기반 영상처리를 위한 텍스쳐 분류 알고리즘)

  • Yu, Seung Wan;Song, Byung Cheol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.146-154
    • /
    • 2014
  • The local binary pattern (LBP) scheme that is one of the texture classification methods normally uses the distribution of flat, edge and corner patterns. However, it cannot examine the edge direction and the pixel difference because it is a sort of binary pattern caused by thresholding. Furthermore, since it cannot consider the pixel distribution, it shows lower performance as the image size becomes larger. In order to solve this problem, we propose a sub-classification method using the edge direction distribution and eigen-matrix. The proposed sub-classification is applied to the particular texture patches which cannot be classified by LBP. First, we quantize the edge direction and compute its distribution. Second, we calculate the distribution of the largest value among eigenvalues derived from structure matrix. Simulation results show that the proposed method provides a higher classification performance of about 8 % than the existing method.