• Title/Summary/Keyword: edge beam

Search Result 352, Processing Time 0.023 seconds

Effects of strain hardening of steel reinforcement on flexural strength and ductility of concrete beams

  • Ho, J.C.M.;Au, F.T.K.;Kwan, A.K.H.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.2
    • /
    • pp.185-198
    • /
    • 2005
  • In the design of reinforced concrete beams, it is a standard practice to use the yield stress of the steel reinforcement for the evaluation of the flexural strength. However, because of strain hardening, the tensile strength of the steel reinforcement is often substantially higher than the yield stress. Thus, it is a common belief that the actual flexural strength should be higher than the theoretical flexural strength evaluated with strain hardening ignored. The possible increase in flexural strength due to strain hardening is a two-edge sword. In some cases, it may be treated as strength reserve contributing to extra safety. In other cases, it could lead to greater shear demand causing brittle shear failure of the beam or unexpected greater capacity of the beam causing violation of the strong column-weak beam design philosophy. Strain hardening may also have certain effect on the flexural ductility. In this paper, the effects of strain hardening on the post-peak flexural behaviour, particularly the flexural strength and ductility, of reinforced normal- and high-strength concrete beams are studied. The results reveal that the effects of strain hardening could be quite significant when the tension steel ratio is relatively small.

A study on the fabrication and processing of ultra-precision diamond tools using FIB milling (FIB milling을 이용한 고정밀 다이아몬드공구 제작과 공정에 관한 연구)

  • Wi, Eun-Chan;Jung, Sung-Taek;Kim, Hyun-Jeong;Song, Ki-Hyeong;Choi, Young-Jae;Lee, Joo-Hyung;Baek, Seung-Yup
    • Design & Manufacturing
    • /
    • v.14 no.2
    • /
    • pp.56-61
    • /
    • 2020
  • Recently, research for machining next-generation micro semiconductor processes and micro patterns has been actively conducted. In particular, it is applied to various industrial fields depending on the machining method in the case of FIB (Focused ion beam) milling. In this study, intends to deal with FIB milling machining technology for ultra-precision diamond tool fabrication technology. Ultra-precision diamond tools require nano-scale precision, and FIB milling is a useful method for nano-scale precision machining. However, FIB milling has a problem of Gaussian characteristics that are differently formed according to the beam current due to the input of an ion beam source, and there are process conditions to be considered, such as a side clearance angle problem of a diamond tool that is differently formed according to the tilting angle. A series of process steps for fabrication a ultra-precision diamond tool were studied and analyzed for each process. It was confirmed that the effect on the fabrication process was large depending on the spot size of the beam and the current of the beam as a result of the experimental analysis.

Development of a Surface Roughness Measurement Method Using Reflected Laser Beam Image and Its Application (레이저광 반사 화상을 이용한 표면 거칠기 측정법의 개발과 적용)

  • Yun, Yun-Feng-Shen;Kim, haa-young;An, jung-hwan;Chi, ei-jon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.51-57
    • /
    • 2001
  • A light beam reflected from a machined surface generally containes information concerning about its surface roughness. This study examines and proposes a surface roughness measurement technique for on-machine measurement of machined surfaces. The technique is based on the measurement of a reflected laser beam pattern and the statistical analysis of its light intensity distribution. The surface roughness was found to be closely related to the standard deviation of the light intensity on the primary axis of the reflected pattern. An image acquisition device is made up of a laser diode, a half mirror, a screen, and a CCD camera. The exact image with the primary and secondary axes of a reflected laser beam pattern is calculated through such image processing algorithm as thresholding, edge detection, image rotation, segmentation, etc. A median filter and a surrounding light correction algorithm are improve the image quality and reduce the measuring error. Using the developed measuring device the effect of screen materials and workpiece and workpiece materials was investigated. Experimental results regarding to relatively high-quality surfaces machined by grinding, polishing, lapping processes have shown the measurement error is within 10% in the range of $0.1{mu}m~0.8{\mu}m R_q.$Therefore, the proposed method is thought to be effectively used when quick measurements is needed with workpieces fixed on the machine.

  • PDF

Quantifications of Intensity-Modulated Radiation Therapy Plan Complexities in Magnetic Resonance Image Guided Radiotherapy Systems

  • Chun, Minsoo;Kwon, Ohyun;Park, Jong Min;Kim, Jung-in
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.2
    • /
    • pp.48-57
    • /
    • 2021
  • Background: In this study, the complexities of step-and-shoot intensity-modulated radiation therapy (IMRT) plans in magnetic resonance-guided radiation therapy systems were evaluated. Materials and Methods: Overall, 194 verification plans from the abdomen, prostate, and breast sites were collected using a 60Co-based ViewRay radiotherapy system (ViewRay Inc., Cleveland, OH, USA). Various plan complexity metrics (PCMs) were calculated for each verification plan, including the modulation complexity score (MCS), plan-averaged beam area (PA), plan-averaged beam irregularity, plan-averaged edge (PE), plan-averaged beam modulation, number of segments, average area among all segments (AA/Seg), and total beam-on time (TBT). The plan deliverability was quantified in terms of gamma passing rates (GPRs) with a 1 mm/2% criterion, and the Pearson correlation coefficients between GPRs and various PCMs were analyzed. Results and Discussion: For the abdomen, prostate, and breast groups, the average GPRs with the 1 mm/2% criterion were 77.8 ± 6.0%, 79.8 ± 4.9%, and 84.7 ± 7.3%; PCMs were 0.263, 0.271, and 0.386; PAs were 15.001, 18.779, and 35.683; PEs were 1.575, 1.444, and 1.028; AA/Segs were 15.37, 19.89, and 36.64; and TBTs were 18.86, 19.33, and 5.91 minutes, respectively. The various PCMs, i.e., MCS, PA, PE, AA/Seg, and TBT, showed statistically significant Pearson correlation coefficients of 0.416, 0.627, -0.541, 0.635, and -0.397, respectively, with GPRs. Conclusion: The area-related metrics exhibited strong correlations with GPRs. Moreover, the AA/Seg metric can be used to estimate the IMRT plan accuracy without beam delivery in the 60Co-based ViewRay radiotherapy system.

A Stability Analysis for Vehicle Impact in U-Channel Segmental Concrete Bridges (U-채널 세그멘탈 콘크리트 교량의 차량충돌에 대한 안전성 분석)

  • Choi, Dong-Ho;Na, Ho-Sung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.6
    • /
    • pp.17-25
    • /
    • 2010
  • This paper studied on stability of the U-channel segmental concrete bridge under vehicle-impact loads. The U-channel bridge has advantages in that it reduces an additional dead load and the edge beams role as a barrier. But it has a dangerous factor which collapses the bridge structure when the edge beams are ruptured. Therefore, it is necessary to verify behaviors of the bridge system under vehicle-impact loads. Static and dynamic vehicle impact simulations were carried out on the basis of AASHTO LRFD design specifications. In case of the static analysis, equivalent static loads specified in the AASHTO codes are loaded on the edge beams and in case of the dynamic analysis, FEM vehicle models are modeled by applying the dynamic test specifications of AASHTO codes. As a result, it is shown that U-channel bridge system has sufficient safety against static and dynamic impact loads specified in the AASHTO LRFD design specifications.

Effects of the Loading Rate and Humidity in the Fracture Toughness Testing of Alumina

  • Cho, Seong-Jai;Kim, Jai-Chun;Yoon, Kyung-Jin;Chu, Min-Cheol;Lee, Yoon-Cheol;Quinn George;Lee, Hong-Lim
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.1 s.284
    • /
    • pp.4-9
    • /
    • 2006
  • To test the fracture toughness of alumina; a Surface-Crack-in-Flexure (SCF) method, a Single-Edge-Precracked-Beam (SEPB) method and a Single-Edge-V-Notched-Beam (SEVNB) method were used at crosshead rates ranging from 0.005 mm/min to 2 mm/ min and relative humidity ranging from $15\%\;to\;80\%$. The results show that the fracture toughness tested by the SCF method increases with either an increasing loading rate or decreasing relative humidity; in contrast, the toughness by the SEPB method and the SEVNB method does not depend on the loading rate or the relative humidity. Theoretical analysis of the way slow crack growth affects the apparent fracture toughness indicates that the three testing methods have different effects with respect to the loading rate and the relative humidity; moreover, these differences are attributable to differences in the size of the cracks or notches.

Vibration-Based Nondestructive Evaluation of Thermal Stress-Induced Damage in Thin Composite Laminates (복합 적층 박판의 열응력 파손에 대한 진동 활용 비파괴평가)

  • Lee, Sung-Hyuk;Choi, Nak-Sam;Lee, Jong-Ki
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.5
    • /
    • pp.347-355
    • /
    • 1999
  • A feasibility investigation on vibration-based nondestructive evaluation of thermal stress-induced micro-failure in the free edge region of thin composite laminates(1mm thick) has been carried out. The failure occurrence and damage zone, which were predicted by the three-dimensional finite-element thermal stress analysis, were observed using the ultrasonic C-scan and optical microscopy. Analysis of the vibration spectrum measured from the laminate beam specimens by the vibration sweep test exhibited that the obvious decrease in resonancy frequency and some considerable increase in damping factor were associated with the micro-failure formation. The vibration technique utilizing short beam and high resonant frequency was found to be very sensitive to the thermal stress-induced damage in the thin laminates.

  • PDF

Comparison of seismic progressive collapse distribution in low and mid rise RC buildings due to corner and edge columns removal

  • Karimiyan, Somayyeh
    • Earthquakes and Structures
    • /
    • v.18 no.5
    • /
    • pp.649-665
    • /
    • 2020
  • One of the most important issues in structural systems is evaluation of the margin of safety in low and mid-rise buildings against the progressive collapse mechanism due to the earthquake loads. In this paper, modeling of collapse propagation in structural elements of RC frame buildings is evaluated by tracing down the collapse points in beam and column structural elements, one after another, under earthquake loads and the influence of column removal is investigated on how the collapse expansion in beam and column structural members. For this reason, progressive collapse phenomenon is studied in 3-story and 5-story intermediate moment resisting frame buildings due to the corner and edge column removal in presence of the earthquake loads. In this way, distribution and propagation of the collapse in progressive collapse mechanism is studied, from the first element of the structure to the collapse of a large part of the building with investigating and comparing the results of nonlinear time history analyses (NLTHA) in presence of two-component accelograms proposed by FEMA_P695. Evaluation of the results, including the statistical survey of the number and sequence of the collapsed points in process of the collapse distribution in structural system, show that the progressive collapse distribution are special and similar in low-rise and mid-rise RC buildings due to the simultaneous effects of the column removal and the earthquake loads and various patterns of the progressive collapse distribution are proposed and presented to predict the collapse propagation in structural elements of similar buildings. So, the results of collapse distribution patterns and comparing the values of collapse can be utilized to provide practical methods in codes and guidelines to enhance the structural resistance against the progressive collapse mechanism and eventually, the value of damage can be controlled and minimized in similar buildings.

Lung Detection by Using Geodesic Active Contour Model Based on Characteristics of Lung Parenchyma Region (폐실질 영역 특성에 기반한 지오데식 동적 윤곽선 모델을 이용한 폐영역 검출)

  • Won Chulho;Lee Seung-Ik;Lee Jung-Hyun;Seo Young-Soo;Kim Myung-Nam;Cho Jin-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.5
    • /
    • pp.641-650
    • /
    • 2005
  • In this parer, curve stopping function based on the CT number of lung parenchyma from CT lung images is proposed to detect lung region in replacement of conventional edge indication function in geodesic active contour model. We showed that the proposed method was able to detect lung region more effectively than conventional method by applying three kinds of measurement numerically. And, we verified the effectiveness of proposed method visually by observing the detection Procedure on actual CT images. Because lung parenchyma region could be precisely detected from actual EBCT (electron beam computer tomography) lung images, we were sure that the Proposed method could aid to early diagnosis of lung disease and local abnormality of function.

  • PDF

Investigation on the flexural behaviour of ferrocement pipes and roof panels subjected to bending moment

  • Alnuaimi, A.S.;Hago, A.W.;Al-Jabri, K.S.;Al-Saidy, A.H.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.4
    • /
    • pp.503-527
    • /
    • 2009
  • This paper presents experimental results on the behaviour and ultimate load of fifteen pipes and six roof panels made of ferrocement. Additional results from three roof panels, carried out by others, are also compared with this research results. OPC cement, natural sand and galvanised iron wire mesh were used for the construction of 20 mm thick specimens. The pipe length was 2 m and roof panel length was 2.1 m. The main variables studied were the number of wire mesh layers which were 1, 2, 3, 4 and 6 layers, the inner pipe diameter which were 105, 210 and 315 mm, cross sectional shape of the panel which were channel and box sections and the depth of the edge beam which were 95 mm and 50 mm. All specimens were simply supported and tested for pure bending with test span of 600 mm at mid-span. Tests revealed that increasing the number of wire mesh layers increases the flexural strength and stiffness. Increasing the pipe diameter or depth of edge beam of the panel increases the cracking and ultimate moments. The change in the pipe diameter led to larger effect on ultimate moment than the effect of change in the number of wire mesh layers. The box section showed behaviour and strength similar to that of the channel with same depth and number of wire mesh layers.