• Title/Summary/Keyword: ecosystem component

Search Result 103, Processing Time 0.028 seconds

Short Note on Freshwater Algal Biomass Measurements and Significance in Ecological Community Studies (민물말류 군집 생태 연구시 생체량 계산의 의미와 예)

  • Chung, Sang-Ok
    • ALGAE
    • /
    • v.19 no.2
    • /
    • pp.149-151
    • /
    • 2004
  • Freshwater algae make up a very important portion of the autotrophic component of the aquatic food web. Therefore, the study of freshwater algal structure and biomass is central to aquatic ecosystem studies. Due to variations in cell shape and size for each species (or taxon) and survey site, cell abundance (or cell numbers per chosen volume) often leads to misrepresentation of the true importance of some species because of the great differences in size of various algae. Thus, it is necessary to investigate the freshwater algal species of a site in order to calculate the cell volume. Although direct cell counting, species volume measurement, as well as biomass calculation are time-consuming and requiring specialists in taxonomy.

Interior Design Research for The Elderly in Three Generation Apartment (삼대가족형 아파트의 노인실 실내계획에 관한 연구)

  • 김정근
    • Korean Institute of Interior Design Journal
    • /
    • no.3
    • /
    • pp.18-25
    • /
    • 1994
  • Interior design is an inerdisciplinary field that is in the early stages of theory development, it is necessary to build theoretical frame work for the research. The purpose of this study is to present interior design and guidelines in a three generation family apartment for the elderly, and to develop a theoretical framework on the basis of the human ecosystem approach for analysis of relations between elderly and environment. Analysis and investigations are done by literature review about residential environmental characteristics of the elderly based on the findings of the conceptual analysis. Environmenta elements of interor design related to elderly in a three generation family apartment are as follow ; First, Natural environmental element is orientation, site, temperature, local weather. Second, human behavioral element is privacy , interior design requirement based on physical and psychological effect, housing policy, behavior. Third, Human constructed environmental element is size of apartment space, interior design component, human dimension, aesthetic condition.

  • PDF

Technical and Industrial Trends of Optical Components for 5G Mobile Access (5G 모바일 액세스용 광 부품 기술 동향)

  • Kwon, O Kyun;Kim, Namje;Park, Miran;Kim, Tae Soo;An, Shinmo
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.4
    • /
    • pp.42-52
    • /
    • 2020
  • The world's first 5G commercial service started in Korea in April 2019. This makes us proud of our status as an ICT powerhouse, and of the domestic optical network industry ecosystem that has served as a lever to make this significant leap forward in technological and industrial competitiveness. Above all, Japan's trade regulations on core parts and the COVID-19 pandemic have led to new changes across cultures, societies, and economies, and 5G networks have become important. The relevant technology for core material parts is a major concern not only of a few industries, but an entire section of society in terms of national competitiveness. In this article, we discuss the role of industries through the analysis of prospects of optical component technology with regard to the changes in the economic and social paradigm caused by the COVID-19 pandemic and Japan's export regulations.

Evaluation of Competitiveness of Domestic Aircraft Manufacturing Enterprises Using Data Mining Techniques

  • Ok, Juseon;Park, Chanwoo
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.6
    • /
    • pp.26-32
    • /
    • 2021
  • The global aircraft-manufacturing industry ecosystem is characterized by the international division of labor through the worldwide supply chain and by the concentration of value added at the top of the supply chain. As a result, the competition for entry into the top supply chain and for order expansion is becoming increasingly intensive. To increase their orders, domestic aircraft manufacturing enterprises need to enhance their competitiveness by evaluating and analyzing it. However, most domestic aircraft manufacturing companies are unaware of the need to quantitatively evaluate their competitiveness. It is challenging to perform such an evaluation, and there are few research cases. In this study, we quantitatively evaluated and analyzed the competitiveness of domestic aircraft manufacturers by using data mining techniques. Thereby, implications for enhancing their competitiveness could be identified.

Alternatives for Quantifying Wetland Carbon Emissions in the Community Land Model (CLM) for the Binbong Wetland, Korea.

  • Eva Rivas Pozo;Yeonjoo Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.413-413
    • /
    • 2023
  • Wetlands are a critical component of the global carbon cycle and are essential in mitigating climate change. Accurately quantifying wetland carbon emissions is crucial for understanding and predicting the impact of wetlands on the global carbon budget. The uncertainty quantifying carbon in wetlands may comes from the ecosystem's hydrological, biochemical, and microbiological variability. The Community Land Model is a sophisticated and flexible land surface model that offers several configuration options such as energy and water fluxes, vegetation dynamics, and biogeochemical cycling, necessitating careful consideration for the alternative configurations before model implementation to develop a practical model framework. We conducted a systematic literature review, analyzing the alternatives, focusing on the carbon stock pools configurations and the parameters with significant sensitivity for carbon quantification in wetlands. In addition, we evaluated the feasibility and availability of in situ observation data necessary for validating the different alternatives. This analysis identified the most suitable option for our study site, the Binbong Wetland, in Korea.

  • PDF

Low Frequency Relationship Analysis between PDSI and Global Sea Surface Temperature (PDSI와 범지구적 해수면온도와의 저빈도 상관성 분석)

  • Oh, Tae-Suk;Kim, Seong-Sil;Moon, Young-Il
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.3
    • /
    • pp.119-131
    • /
    • 2010
  • Drought is one of disaster causing factors to produce severe damage in the World because drought is destroyed to the ecosystem as well as to make difficult the economy of the drought area. This study, using Palmer Drought Severity Index carries out correlation analysis with sea surface temperatures. Comparative analysis carries out by calculated Palmer Drought Severity Index and past drought occurrence year. Result of comparative analysis, PDSI indexes were in accord with the past drought. Cluster analysis for correlation analysis carries out using precipitation and temperature that is input datas palmer drought severity index, and the result of cluster analysis was classified as 6. Also, principal component carries out using result of cluster analysis. 14 principal component analyze out through principal component analysis. Using analyzed 14 principal component carries out correlation analysis with sea surface temperature that is delay time from 0month until 11month. Correlation analysis carries out sea surface temperatures and calculated cycle component of the low frequency through Wavelet Transform analysis form principal component. Result of correlation analysis, yang(+) correlation is bigger than yin(-) correlation. It is possible to check similar correlation statistically the area of sea surface temperature with sea surface temperature in the Pacific. Forecasting possibility of the future drought make propose using sea surface temperature.

Allometry, Biomass and Productivity of Quercus Forests in Korea: A Literature-based Review

  • Li, Xiaodong;Yi, Myong-Jong;Son, Yo-Whan;Jin, Guangze;Lee, Kyeong-Hak;Son, Yeong-Mo;Kim, Rae-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.5
    • /
    • pp.726-735
    • /
    • 2010
  • Publications with the data on allometric equation, biomass and productivity of major oak forests in Korea were reviewed. Different allometric equations of major oak species showed site- or speciesspecific dependences. The biomass of major oak forests varied with age, dominant species, and location. Aboveground tree biomass over the different oak species was expressed as a power equation of the stand age. The proportion of tree component (stem, branch and leaf) to total aboveground biomass differed among oak species, however, biomass ranked stem > branch > leaf in general. The leaf biomass allocation over the different oak species was expressed as a power equation of total aboveground biomass while there were no significant patterns of biomass allocation from stem and branch to the aboveground biomass. Tree root biomass continuously increased with the aboveground biomass for the major oak forests. The relationship between the root to shoot ratio and the aboveground tree biomass was expressed by a logarithmic equation for major oak forests in Korea. Thirteen sets of data were used for estimating the net primary production (NPP) and net ecosystem production (NEP) of oak forests. The mean NPP and NEP across different oak forests was 10.2 and 1.9 Mg C $ha^{-1}year^{-1}$. The results in biomass allocation, NPP and NEP generally make Korean oak forests an important carbon sinks.

Characteristics and Variation of Size-fractionated Zooplankton Biomass in the Northern East China Sea (동중국해 북부해역의 동물플랑크톤 크기그룹별 생체량의 분포 특성 및 변화)

  • Choi, Keun-Hyung;Lee, Chang-Rae;Kang, Hyung-Ku;Kang, Kyeong-A
    • Ocean and Polar Research
    • /
    • v.33 no.2
    • /
    • pp.135-147
    • /
    • 2011
  • Zooplankton is an important constituent in assessing ecosystem responses to global warming. The northern East China Sea is an important ecosystem for carbon cycling with a net sink of carbon dioxide. Despite their importance as a major component in carbon cycling, relatively little is known about zooplankton biomass structure and its regulating factors in the northern East China Sea. This study examined zooplankton biomass distribution pattern in the region from multiple cruises encompassing various seasons between 2004 and 2009. Results showed that zooplankton biomass exhibits less cross-shelf gradient in general with declining biomass to the eastern shelf towards the Tsushima Current Water. Size-fractionated biomass showed that the 1.0~2.0 mm size group, mostly copepods, dominated zooplankton biomass, comprising 38 to 48% of total biomass. Smaller zooplankton (0.2~1.0 mm) biomass, consisting mainly of Paracalanus spp, a particle eating herbivorous copepod, was positively related to chlorophyll-a concentration, but no relationship was established for larger zooplankton (1.0~5.0 mm). Spatially-averaged mean total zooplankton biomass was also highly related to chlorophyll-a concentration. These result suggest that the long-term trend of zooplankton biomass increase in this region is partly accounted for by the increases of phytoplankton biomass and productivity underway in the region. However, the underlying mechanisms of how sea surface warming in the study area leads to increased phytoplankton biomass and productivity remains unclear.

Environmental Damages in the Atlantic Forest Biome

  • Brodt, Michele Santa Catarina;Bergmann, Melissa;Broman, Eli Natali;Sanfelice, Gabriela;Ferreira, Juliana Duarte;Lunardi, Larissa;Huller, Alexandre;Carli, Lenice De
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.2
    • /
    • pp.101-107
    • /
    • 2018
  • We identified the main impacts, drivers, and restoration projects for Atlantic Forest in Northwest of the Rio Grande do Sul State, Brazil. The objective was to analyze the quantity, distribution, and causes of the environmental crimes in 2000-2014. To verify differences between degraded and restored areas, we performed a t-test; ANOVA for the municipalities with more quantity of crimes, simple linear regression analysis for the relationship between sizes of degraded areas and quantity of seedlings planted, and Principal Component Analysis (PCA) for environmental damages categories and population of the municipalities. The main environmental damages found were deforestation outside permanent preservation area (20%) and those related to Permanent Preservation Area (37%). Environmental crimes in these areas fall into two categories: native and exotic vegetation removal (17%), and impediment to natural regeneration (20%). The average size of the degraded areas was $5,359{\pm}526m^2$, while for restored areas was $3,337{\pm}255m^2$. The sizes of the degraded fragments were similar among the five municipalities with the higher number of environmental crimes (ANOVA: p>0.05, F=1.24; df=241). The number of seedlings planted was positively related to the sizes of the degraded fragments (p<0.001, $R^2=0.53$). Segregation between the less and the most populous municipalities was found with the PCA analysis along PC1 (51.7%), while PC2 represented 19.2% of the total variation. The most populous municipalities showed the highest number of environmental crimes, and the majority of degraded areas were recovered by planting native seedlings. Atlantic Forest fragments need to be recognized and preserved as an ecosystem with a unique ecological function by the population and public administration.

Prospect and Roles of Molecular Ecogenetic Techniques in the Ecophysiological Study of Cyanobacteria (남조류의 생리·생태 연구에서 분자생태유전학적 기법의 역할 및 전망)

  • Ahn, Chi-Yong
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.1
    • /
    • pp.16-28
    • /
    • 2018
  • Although physiological and ecological characteristics of cyanobacteria have been studied extensively for decades, unknown areas still remain greater than the already known. Recently, the development of omics techniques based on molecular biology has made it possible to view the ecosystem from a new and holistic perspective. The molecular mechanism of toxin production is being widely investigated, by comparative genomics and the transcriptomic studies. Biological interaction between bacteria and cyanobacteria is also explored: how their interactions and genetic biodiversity change depending on seasons and environmental factors, and how these interactions finally affect each component of ecosystem. Bioinformatics techniques have combined with ecoinformatics and omics data, enabling us to understand the underlying complex mechanisms of ecosystems. Particularly omics started to provide a whole picture of biological responses, occurring from all layers of hierarchical processes from DNA to metabolites. The expectation is growing further that algal blooms could be controlled more effectively in the near future. And an important insight for the successful bloom control would come from a novel blueprint drawn by omics studies.