• Title/Summary/Keyword: economical design

Search Result 1,367, Processing Time 0.031 seconds

A Study of Reinforced Design Chart for Soil Nailing Slopes (Soil Nailing 공법을 적용하기 위한 사면보강 설계도표에 관한 연구)

  • Seo, Jin-Won;Kim, Hak-Moon;Jang, Kyung-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.1009-1019
    • /
    • 2009
  • Soil nailing method is widely used in reinforcing slopes and excavating earth. The analysis of nail-reinforced slopes, in order to determine the economical length ratio and nail angle, complicated analytical need to be applied by means of computer programs. Therefor this suggested Soil stability Chart for nailed slopes which may be very useful for pre-design, rapidly design, and final check. Three slope types, three nail length and three nail angles are selected for the stability analysis by using limit equilibrium method of Bishop and French Method. From the above results, this study propose the slope reinforced design charts for dry season and rainy season. This proposed reinforced design charts can check dry season as well as rainy season, also these charts can provide reinforcing requirement, soil nail's economical length ratio and nail angle as well.

  • PDF

Comparative Study of Design Methods for Sliding of Perforated-wall Caisson Breakwater (유공케이슨 방파제의 활동에 대한 설계법 비교 연구)

  • Kim, Nam-Hoon;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.5
    • /
    • pp.267-277
    • /
    • 2014
  • The conventional performance-based design method for the solid-wall caisson breakwater has been extended and applied to the perforated-wall caisson. The mathematical model to calculate the sliding distance of a perforated-wall caisson is verified against hydraulic experimental data. The developed performance-based design method is then compared with the conventional deterministic method in different water depths. Both the expected sliding distance and the exceedance percentage of total sliding distance during the structure lifetime decrease with decreasing water depth outside the surf zone, but they increase with decreasing water depth inside the surf zone. The performance-based design method is either more economical or less economical than the deterministic method depending on which design criterion is used. If the criterion for the ultimate limit state is used, the former method is less economical than the latter outside the surf zone, whereas the two methods are equally economical inside the surf zone. However, if the breakwater is designed to satisfy the criterion for the repairable limit state, the former method is more economical than the latter in all water depths.

Optimum Design of Prestressed Concrete Girder Railway Bridge (프리스트레스트 콘크리트 거더 철도교의 최적설계)

  • Lee Jong-Min;Seo Dong-Joo;Lee Tae-Gyun;Lee Joung-Sun;Cho Sun-Kyu
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.3
    • /
    • pp.267-275
    • /
    • 2005
  • Prestressed concrete girder(PSC girder) bridges have been used widely at the railway as well as highway because they are great in the functional and economical efficiency. Also they have the advantage of convenience of design and construction. However it could be easily verified that the section of PSC girder is excessive design, which has much redundancy against design loads. Thus, in this paper the formulation of the optimum design for PSC girder railway bridge is suggested and dominant design variables and constraints are inquired as performing the optimum design. In order to effective optimum design, design variables are formulated as PSC girder sectional dimension and girder space. The objective is adopted as total cost of PSC girder railway bridge. Also, constraints are formulated according to Korean railway design specification and considering construction-ability such as PS anchorage and girder space. Using the proposed optimum design system, optimum PSC girder railway bridge design has been performed. And from the results of analysis it is suggested to denote the optimum section which satisfies the structural safety and economical efficiency all together.

Optimum Design of Prestressed Concrete Girder Railway Bridge (프리스트레스트 콘크리트 거더 철도교의 최적설계)

  • Cho, Sun-Kyu;Youn, Seok-Goo;Seo, Dong-Joo;Jung, Jae-Dong;Kim, Hyun-Woo
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1125-1130
    • /
    • 2004
  • The prestressed concrete girder bridges have been used widely at the domestic national road as well as highway because it is great in the functional and economical efficiency. Also it has the advantage of convenience of design and construction due to being given standard sections. However it could be easily verified that a standard section of P.S.C girder is excessive design, which has much more redundancy than is necessary against design loads. Thus, in this paper the formulation of the optimum design for PSC girder railway bridge is suggested and dominant design variables and constraints are inquired as performing the optimum design. The objective is adopted as total cost of PSC girder bridge ,and in order to effective optimum design, design variables are formulated as PSC girder section dimension and girder space as well. And constraints are formulated according to Korean railway design specification and considering construction-ability such as PS anchorage and girder space. Using the proposed optimum design system, optimum PSC girder bridge design has been performed. And from the results of analysis it is suggested to denote the optimum section which satisfies the structural safety ,and economical efficiency all together.

  • PDF

A Study of Optimum Section of PSC Girder Railway Bridge according to Variation of Span Length (지간장 변화에 따른 프리스트레스트 콘크리트 거더 철도교의 최적단면에 관한 연구)

  • Cho Sun-Kyu;Kim Su-Hyun;Lee Jong-Min;Lee Tae-Gyun
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1209-1214
    • /
    • 2005
  • Prestressed concrete girder(PSC girder) bridges have been used widely at the railway as well as highway because they are great in the functional and economical efficiency. Also they have the advantage of convenience of design and construction. Generally, the PSC girder railway bridges with span length 25m are adopted in the country and it could be easily verified that the section of PSC girder using railway bridge is excessive design, which has much redundancy against design loads. Thus, in this paper the optimum design for PSC girder railway bridge with span length 30m is performed. And from the results of analysis it is suggested to denote the optimum section which satisfies the structural safety and economical efficiency all together.

  • PDF

The Energy Consumption Analysis for the Eco-friendly Design Application Factors of a Broadcasting Building (방송사 건물의 친환경 설계 적용 요소에 대한 에너지 소비 분석 연구)

  • Kim, Bae-Young;Yoon, Hea-Kyung
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.2
    • /
    • pp.41-48
    • /
    • 2018
  • This study is expected to provide some basic data on how to apply more economical and efficient eco-friendly factors to reduce the carbon emissions. It has been scrutinized and analyzed the environmental factors of passive eco-friendly elements along with active eco-friendly elements as more efficient factors for energy conservation based on the case of a newly constructed broadcasting building with the green building certification in Sangam-dong DMC area. The first analysis was the energy consumption trends in Korea and the necessity of energy saving. Secondly, it was examined the energy consumption in the current status of the broadcasting building. Thirdly, it was looked into the correlation between the eco-friendly design application factors applied to the broadcasting building and the energy consumption types. As a result of the analysis, the application of fan and feed pump inverter along with ventilation system of waste heat recovery ventilation system were more meaningful in accordance with the economic feasibility of broadcasting buildings rather than economical effect of passive elements such as rooftop garden, reinforcement of building insulation. Also, the application of lighting control had the economical feasibility. Therefore, when it is intended to change the green building certification energy related evaluation items of the similar broadcasting building types, it is necessary to change the direction of adding weight to the more economical active element items in the future.

A Comparative Study on the Design of Adaptive Control Charts (적응형 관리도의 설계에 대한 비교연구)

  • Lim, Tae-Jin
    • Journal of Korean Society for Quality Management
    • /
    • v.36 no.1
    • /
    • pp.7-19
    • /
    • 2008
  • During the past two decades, a huge amount of research on adaptive control charts has been accomplished. Especially, variable sampling interval (VSI), variable sample size (VSS), and variable sample size and sampling interval (VSSI) charts have been focused by many researchers due to their simplicity and efficiency. On the other hand, the difference among notations, assumptions, methodologies may cause confusions in per forming further studies or practical implementations. This research analyses and compares diverse models so as to provide a unified view on statistical and economical characteristics. As a result, we perform comparative study on economical design models of VSI, VSS, and VSSI charts, respectively, We also present practical guidelines to utilize those adaptive control charts.

Proper Conditions of Structure to Prevent Eddy Creation in Cooling Water Intake Canal of Stream Power Plant (화력발전소 냉각 취수로내의 와류발생 방지를 위한 구조물의 적정조건검토)

  • 조진훈;천만복
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.465-472
    • /
    • 1999
  • Hydraulic model tests are performed to find economical and hdrqulically stable design of cooling water intake channel of steam power plant. The result of tests show that the standard distributiion of y-components in the chamber of CWP(circulating Water Pump) are recommended below 3.5 to maintain hydraulic stability, so that this value is considered as the design criteria. Common basin is necessary to improve the hydraulic stability of inflow, however the longer basin does not always improve the hydraulic stability , and the optimal length of basin can be found in some range. From the results the flow stability maintained the best condition when the length of basin is 7.2m. Beside the standard tests the auxiliary tests like edge , baffle, trapezoidal section and increase of pump capacity are carried out based on the optimal condition foudn in the standard tests. From the series of tests the economical and hydraulically stable design of intake channel was proposed.

  • PDF

A Study on The Types and Traits of Conversion Design Methods of Modern Architecture for Renewal Use in Japan (일본에서의 근대건축물의 재생과 활용을 위한 킨버전디자인 수법의 유형과 특성에 관한 연구)

  • Lo, Jung-Eun;Park, Chan-Il
    • Korean Institute of Interior Design Journal
    • /
    • v.16 no.2 s.61
    • /
    • pp.40-50
    • /
    • 2007
  • This study started from my concern over maintenance and renewal of existing buildings and other seriously damaged Modern Architecture under the urban development. Above all, we must face up to reality of an increasing need of renovation of old buildings that are in its physical, social, and economical decrepitude. Currently, 25% of total buildings come under renovation period within 20 years, which means that we do not have enough time to decide the destiny of old buildings. In the city, there has been endless controversy over conversation and development. Recently the Cultural property Registration System made it possible a positive usage of non-designated cultural property with historical value. This very useful system renewed our perception on Modern Architecture as cultural property and also triggered peoples' interest in recreating new value beyond economical one. So we really need a balanced view that can bring into both growth of contemporary city and renewal use of Modern Architecture. Here, in this study I tried to solve that problem with Conversion Design and define what a realistic design way for them is. To get more reasonable result, I chose a factor analysis for 20 conversion projects in Japanese Modern Architecture. Conversion Design is a proper way to restore the identity of old buildings and the most effective way to sustainable use of Modern Architecture.

Theoretical and experimental studies of unbraced tubular trusses allowing for torsional stiffness

  • Chan, S.L.;Koon, C.M.;Albermani, F.G.
    • Steel and Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.209-222
    • /
    • 2002
  • This paper describes the buckling phenomenon of a tubular truss with unsupported length through a full-scale test and presents a practical computational method for the design of the trusses allowing for the contribution of torsional stiffness against buckling, of which the effect has never been considered previously by others. The current practice for the design of a planar truss has largely been based on the linear elastic approach which cannot allow for the contribution of torsional stiffness and tension members in a structural system against buckling. The over-simplified analytical technique is unable to provide a realistic and an economical design to a structure. In this paper the stability theory is applied to the second-order analysis and design of the structural form, with detailed allowance for the instability and second-order effects in compliance with design code requirements. Finally, the paper demonstrates the application of the proposed method to the stability design of a commonly adopted truss system used in support of glass panels in which lateral bracing members are highly undesirable for economical and aesthetic reasons.