DOI QR코드

DOI QR Code

Comparative Study of Design Methods for Sliding of Perforated-wall Caisson Breakwater

유공케이슨 방파제의 활동에 대한 설계법 비교 연구

  • Kim, Nam-Hoon (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Suh, Kyung-Duck (Department of Civil and Environmental Engineering & Engineering Research Institute, Seoul National University)
  • 김남훈 (서울대학교 건설환경공학부) ;
  • 서경덕 (서울대학교 건설환경공학부 및 공학연구소)
  • Received : 2014.02.08
  • Accepted : 2014.10.10
  • Published : 2014.10.31

Abstract

The conventional performance-based design method for the solid-wall caisson breakwater has been extended and applied to the perforated-wall caisson. The mathematical model to calculate the sliding distance of a perforated-wall caisson is verified against hydraulic experimental data. The developed performance-based design method is then compared with the conventional deterministic method in different water depths. Both the expected sliding distance and the exceedance percentage of total sliding distance during the structure lifetime decrease with decreasing water depth outside the surf zone, but they increase with decreasing water depth inside the surf zone. The performance-based design method is either more economical or less economical than the deterministic method depending on which design criterion is used. If the criterion for the ultimate limit state is used, the former method is less economical than the latter outside the surf zone, whereas the two methods are equally economical inside the surf zone. However, if the breakwater is designed to satisfy the criterion for the repairable limit state, the former method is more economical than the latter in all water depths.

본 연구에서는 기존의 무공케이슨 방파제에 대하여 개발된 성능설계법을 유공케이슨 방파제로 확장하여 적용하였다. 확장된 계산 모형은 한국해양연구소에서 수행한 수리 실험결과와 비교하여 검증하였다. 케이슨의 안정성을 평가하기 위하여 방파제 수명 동안의 누적활동량의 평균으로 정의되는 기대활동량과 누적활동량이 일정한 허용치를 초과할 확률을 산정하여 케이슨의 안정성 평가에 사용하였다. 기대활동량과 초과확률 모두 수심이 감소함에 따라 쇄파대 안쪽에서는 증가하며, 바깥쪽에서는 감소하는 경향을 보였다. 또한, 안전율에 기초한 결정론적 설계법의 결과와 비교해 보았을 때, 성능설계법의 설계기준에 따라 경제성이 달라지는 것으로 나타났다. 허용기대활동량과 초과확률이 극한 한계상태를 만족할 경우 쇄파대 바깥쪽에서는 성능설계법이 결정론적 설계법보다 비경제적인 것으로 나타났으며, 쇄파대 안쪽에서는 비슷한 경제성을 가지는 것으로 나타났다. 그러나, 복구가능한계상태를 만족할 경우 성능설계법이 결정론적 설계법보다 더 경제적인 것으로 평가되었다.

Keywords

References

  1. Goda, Y. (1974). A new wave pressure formulae for composite breakwater. Proceedings of 14th Int. Conf. Coast. Eng., ASCE, Copenhagen, 1702-1720.
  2. Goda, Y. (1975). Deformation of irregular waves due to depth-controlled wave breaking. Rep. of Port and Harb. Res. Inst., 14(3), 5012-5018.
  3. Goda, T. (2001). Performance-based design of caisson breakwaters with new approach to extreme wave statistics. Coast. Eng. J., 43(4), 289-316. https://doi.org/10.1142/S0578563401000384
  4. Goda, Y. (2003). Revisiting Wilson's formulas for simplified wind wave prediction. J. Waterw., Port, Coast. Ocean Eng., 129(2), 93-95. https://doi.org/10.1061/(ASCE)0733-950X(2003)129:2(93)
  5. Goda, Y. and Takagi, H. (2000). A reliability design method of caisson breakwaters with optimal wave height. Coast. Eng. J., 42, 357-387.
  6. Hong, S. Y., Suh, K. D. and Kweon, H. M. (2004). Calculation of expected sliding distance of breakwater caisson considering variability in wave direction. Coast. Eng. J., 46(1), 119-140. https://doi.org/10.1142/S0578563404000987
  7. Kim, D. H. (2005). Calculation of expected sliding distance of wave dissipating caisson breakwater. J. Korean Society of Coast. Ocean Eng., 17(4), 213-220 (in Korean).
  8. Kim, S.W. and Suh, K. D. (2009). Exceedance probability of allowable sliding distance of caisson breakwater in Korea. J. Korean Society of Coast. Ocean Eng., 21(6), 495-507 (in Korean).
  9. Kim, T. M. and Takayama, T. (2003). Computational improvement for expected sliding distance of a caisson-type breakwater by introduction of a doubly-truncated normal distribution. Coast. Eng. J., 45(3), 387-419. https://doi.org/10.1142/S0578563403000816
  10. Korea Ocean Research and Development Institute (KORDI) (1992). Report for Basic Design of a Breakwater Protecting New Marine Town, Hydraulic Model Test-II (Cross-Sectional Stability Test). KORDI, Ansan, Korea (in Korean).
  11. Shimosako, K. and Takahashi, K. (1999). Application of deformation-based reliability design for coastal structures. Proc. Int. Conf. Coastal Struct., A. A. Balkema, 363-371.
  12. Shimosako, K. and Tada, T. (2004). Verification procedures of performance- based design on the sliding stability of composite breakwaters. Proc. Tech-Ocean 2004., 53-58.
  13. Suh, K. D., Kwon, H. D., and Lee, D. Y. (2010). Some characteristics of large deepwater waves around the Korean Peninsula. Coast. Eng., 57, 375-384. https://doi.org/10.1016/j.coastaleng.2009.10.016
  14. Suh, K. D., Kim, S. W., Kim, S., and Cheon, S. (2013). Effects of climate change on stability of caisson breakwaters in different water depths. Ocean. Eng., 71, 103-112. https://doi.org/10.1016/j.oceaneng.2013.02.017
  15. Takahashi, S., Shimosako, K. and Sasaki, H. (1991). Experimental study on wave forces acting on perforated wall caisson breakwaters. Rep. of Port and Harb. Res. Inst., 30(4), 3-34 (in Japanese).
  16. Takahashi, S., Shimosako, T. and Hanzawa, M. (2001). Performance design for maritime structure and its application to vertical breakwater - caisson sliding and deformation-based reliability design. Proceedings Advanced Design of Maritime Structures in the 21st Century edited by Goda, Y. and Takahashi, S., Port and Harbour Res. Inst., Yokosuka, Japan, 63-73.
  17. Takayama, T. and Ikeda, N. (1992). Estimation of sliding failure probability of present breakwaters for probabilistic design. Rep. of Port and Hab. Res. Inst., 31(5), 3-32.
  18. U.S. Army Coastal Eng. Res. Center (1977). Shore Protection Manual 3rd edn., U.S. Government Publishing Office, Washington, D.C., USA.