• 제목/요약/키워드: ecological response

검색결과 387건 처리시간 0.031초

HOW TO DEFINE CLEAN VEHICLES\ulcorner ENVIRONMENTAL IMPACT RATING OF VEHICLES

  • Mierlo, J.-Van;Vereecken, L.;Maggetto, G.;Favrel, V.;Meyer, S.;Hecq, W.
    • International Journal of Automotive Technology
    • /
    • 제4권2호
    • /
    • pp.77-86
    • /
    • 2003
  • How to compare the environmental damage caused by vehicles with different foe]s and drive trains\ulcorner This paper describes a methodology to assess the environmental impact of vehicles, using different approaches, and evaluating their benefits and limitations. Rating systems are analysed as tools to compare the environmental impact of vehicles, allowing decision makers to dedicate their financial and non-financial policies and support measures in function of the ecological damage. The paper is based on the "Clean Vehicles" research project, commissioned by the Brussels Capital Region via the BIM-IBGE (Brussels Institute for the Conservation of the Environment) (Van Mierlo et at., 2001). The VriJe Universiteit Brussel (ETEC) and the universite Libre do Bruxelles (CEESE) have jointly carried out the workprogramme. The most important results of this project are illustrated in this paper. First an overview of environmental, economical and technical characteristics of the different alternative fuels and drive trains is given. Afterward the basic principles to identify the environmental impact of cars are described. An outline of the considered emissions and their environmental impact leads to the definition of the calculation method, named Ecoscore. A rather simple and pragmatic approach would be stating that all alternative fuelled vehicles (LPG, CNG, EV, HEV, etc.) can be considered as ′clean′. Another basic approach is considering as ′clean′ all vehicles satisfying a stringent omission regulation like EURO IV or EEV. Such approaches however don′t tell anything about the real environmental damage of the vehicles. In the paper we describe "how should the environmental impact of vehicles be defined\ulcorner", including parameters affecting the emissions of vehicles and their influence on human beings and on the environment and "how could it be defined \ulcorner", taking into account the availability of accurate and reliable data. We take into account different damages (acid rain, photochemical air pollution, global warming. noise, etc.) and their impacts on several receptors like human beings (e.g., cancer, respiratory diseases, etc), ecosystems, or buildings. The presented methodology is based on a kind of Life Cycle Assessment (LCA) in which the contribution of all emissions to a certain damage are considered (e.g. using Exposure-Response damage function). The emissions will include oil extraction, transportation refinery, electricity production, distribution, (Well-to-Wheel approach), as well as the emission due to the production, use and dismantling of the vehicle (Cradle-to-Grave approach). The different damages will be normalized to be able to make a comparison. Hence a reference value (determined by the reference vehicle chosen) will be defined as a target value (the normalized value will thus measure a kind of Distance to Target). The contribution of the different normalized damages to a single value "Ecoscore" will be based on a panel weighting method. Some examples of the calculation of the Ecoscore for different alternative fuels and drive trains will be calculated as an illustration of the methodology.

저온 처리한 상추 잎에서 monodehydroascorbate 환원효소의 반응 (Response of Monodehydroascorbate Reductase in Lettuce Leaves Subjected to Low Temperature Stress)

  • 강상재
    • 생명과학회지
    • /
    • 제21권3호
    • /
    • pp.368-374
    • /
    • 2011
  • 식물의 저온 적응 메카니즘에서 아스코브산과 관련된 효소 중 MDHA 환원효소의 활성도와 과산화수소, 아스코브산의 함량, mRNA의 발현수준과의 연관성을 연구한 결과는 다음과 같다. MDHA 환원효소의 활성도 변화는 저온에 노출되는 시간이 길어질수록 증가하였으며 6시간 이후에 엽록체분획과 세포질분획에서 급격하게 증가하는 경향을 보였으나 실온으로 회복시켰을 때 효소의 활성도가 상대적으로 감소하는 경향을 보였다. 저온에 노출된 동안 아스코브산의 함량은 비교적 일정한 경향을 보이다가 실온으로 회복시키면 그 이후에는 급격하게 증가하는 경향을 보였다. 반면 저온에 노출되는 동안 급격히 dehydroascorbate 함량이 감소하였다가 실온으로 회복되면 약간 증가하는 경향을 보였다. 아스코브산의 함량과 엽록체분획과 세포질분획의 MDHA 환원효소의 활성도와의 상관관계는 각각 정의 상관($R^2$=0.9240, 0.9108)을 나타내었으나 디하이드로아스코브산의 함량과 MDHA 환원효소의 활성도 사이에는 각각 부의 상관($R^2$=0.8638, 0.8980)을 나타내었다. MDHA 환원효소 활성도와 과산화수소의 함량과의 상관관계를 과산화수소의 생성량이 증가하면 MDHA 환원효소의 활성도가 증가하는 정의 상관($R^2$=0.9443, 0.9647)을 나타내었다. 저온스트레스 처리 시간이 증가할수록 MDHA 환원효소의 mRNA의 발현 수준과 총 MDHA 환원효소의 활성도가 증가하는 경향을 나타내었다.

기후변화에 대응한 녹색건축인증기준 개선을 위한 조사연구: 공동주택 외부환경을 중심으로 (A Survey to Improve the Green Building Certifications Responding to Climate Change: Focused on the External Environment of Housing)

  • 권혁삼;김지현;김정곤
    • 토지주택연구
    • /
    • 제4권4호
    • /
    • pp.435-447
    • /
    • 2013
  • 본 연구는 기후변화에 대응하여 2013년 3월 시행된 녹색건축인증기준의 평가항목 및 실제 인증현황 분석을 통해 현행 인증기준의 개선방향 모색을 위한 기초자료를 제시하는 것을 목적으로 한다. 최근 영국 BREEAM, 미국 LEED, 독일 DGNB, 일본 CASBEE 등 선진국의 녹색인증기준은 기후변화에 대응하여 BREEAM Communities, LEED Neighborhood Development, DGNB Stadtquartiere, CASBEE Urban Development로 건축물 중심에서 도시 지구 차원으로 확대하여 시범 운영하고 있다. 이에 반해 국내 인증기준은 건축물 중심의 평가체계로 실내환경 및 에너지 부문의 배점비율이 높고, 외부환경에 해당되는 토지이용 및 교통 부문과 생태환경 부문은 배점비율이 낮다. 실제 토지주택연구원에서 인증을 받은 공동주택 79개 단지에 대한 평가점수를 분석한 결과, 실내환경 및 에너지 등 배점이 높은 평가항목에 따라 인증등급이 결정되어 배점이 낮은 외부환경 부문의 평가항목은 실효성이 없는 것으로 나타났다. 따라서 녹색건축인증기준이 기후변화 대응을 위한 실천수단으로 역할을 하기 위해서는 외부환경 부문의 평가체계를 보완하고, 나아가 국내 현실을 반영하여 도시 지구 차원의 평가체계 도입을 통해 국제적 인증기준에 부합하는 방향으로 개선해야 한다.

Bioaccumulation Patterns and Responses of Fleece-flower; Persicaria thunbergii to Cadmium and Lead

  • Kim, In Sung;Kang, Kyung Hong;Lee, Eun Ju
    • The Korean Journal of Ecology
    • /
    • 제25권4호
    • /
    • pp.253-259
    • /
    • 2002
  • Application of phytoremediation in the polluted area to remove undesirable materials is a complex and difficult subject without detailed investigation and experimentation. We investigated the accumulation patterns of cadmium and lead in plants naturally grown, the bioavailability of plants to accumulate these toxic metals and the responses of P. thunbergii to cadmium and lead. The soil samples contained detectable lead (<$17.5_\mu$g/g), whereas cadmium was not detected in the soils of study area. The whole body of Persicaria thunbergii contained detectable lead (<320.$8_\mu$g/g/g) but cadmium was detected only in the stem (<7.$4_\mu$g/g/g) and root (<10.$4_\mu$g/g/g) of P. thunbergii. Cadmium was not detected in Trapa japonica and Nymphoides peltata, whereas lead was detected in T. japonica (<323.$7_\mu$g/g/g) and N. peltata (<177.$5_\mu$g/g/g). Correlation coefficient between lead content in soil and in these plant samples represented positive correlation. The total content of lead in each plant sample increased in the order of N. peltata$\leq$P. thunbergii

염분 환경하에서 4종 콩과식물의 생장, 아미노산 및 질소함량에 미치는 질소원의 영향 (Effects of Nitrogen Application on the Patterns of Amino Acids, Nitrogen Contents and Growth Response of Four Legume Plants under Saline Conditions)

  • 배정진;추연식;김진아;노광수;송종석;송승달
    • The Korean Journal of Ecology
    • /
    • 제26권3호
    • /
    • pp.135-142
    • /
    • 2003
  • 콩과식물의 염분 내성에 대한 질소원의 영향을 규명하기 위하여 4종 콩과식물을 선택하여 100 mM까지의 NaCl을 처리하였다. 염-민감성 종으로 알려진 대두와 팥은 염분 농도가 증가함에 따라 총 질소 함량이 점차 감소하는 반면, 아미노산 함량은 현저히 증가(100 mM NaCl 처리된 대두 무질소구의 경우 대조구의 4.7배)하여 높은 가용성/불용성 질소 비를 보였다. 대조적으로 염분 내성을 보이는 긴강남차와 자귀나무는 아미노산을 거의 함유하지 않았으며, 염 구배에 따라 총 질소 함량(특히 불용성 질소)이 점차 증가하는 양상을 보였다. 대두와 팥은 아미노산 중 asparagine (Asn)을 다량으로 함유하였으며, Asn은 이들 식물의 대표적인 질소의 수송 및 저장형태로서 염분 환경하에서 이들 식물의 세포질 내 삼투조절에 관여하는 것으로 생각된다. 염 환경에서 대두의 생장에 대한 질소원 및 농도의 영향은 5 mM NH₄NO₃-N 처리구에서 가장 높은 건물함량(10mM NaCl 처리구의 지상부건물함량의 경우 대조구의 약 1.5배)을 보였고, NH₄-N을 공급한 식물의 경우 질소를 공급하지 않은 대조구보다 생장이 저해되었으며, 처리 15일 이후 40과 80 mM NaCl 처리구에서 모두 고사하였다. 따라서 대두의 생장은 NH₄-N, 대조구, NO₃-N, NH₄NO₃-N의 순으로 질소공급량이 증가할수록 염에 대한 저항성이 증가하는 것으로 나타났다.

Photosynthetic Patterns of 3 Crassulacean Plants under Drought Conditions

  • Kim, Tae-Jin;Choo, Yeon-Sik
    • Journal of Ecology and Environment
    • /
    • 제30권2호
    • /
    • pp.187-193
    • /
    • 2007
  • Higher plants can be categorized as C3, C4 or CAM according to their photosynthetic pathways, and some succulent plants are known to shift their patterns of photosynthesis from C3 to CAM in response to environmental stresses such as salt treatment or water deficiency. To investigate fundamental photosynthetic patterns and the induction of pattern shifts (C3, CAM, C3-CAM etc.) as a result of environmental stresses, we measured the water content, diurnal changes in pH, net $CO_2$ exchange, transpiration rate, total ionic contents, and osmolality of Kalancoe daigremontiana, Sedum kamschaticum and Sedum sarmentosum which belong to Crassulaceae known as representative CAM plant, after 10 days of drought treatment. S. kamschaticum and S. sarmentosum did not show a significant difference in diurnal pH variation in the treatment and control conditions. However, the pH of drought-treated Kalancoe was low at night and high in the daytime, with a pH value between 4 and 5. Typical CAM plants display a net $CO_2$ exchange that increases at night and decreases in the daytime. Kalancoe displayed the predicted pattern. However, S. kamschaticum and S. sarmentosum showed a photosynthetic pattern more typical of C3 plants, and did not show changes in photosynthetic pattern under drought stress. Kalancoe also showed a transpiration rate typical for CAM pho-tosynthesis, whereas the transpiration rates of S. kamschaticum and S. sarmentosum were in the typical range for C3 photosynthesis. Kalancoe had high total ionic contents during the night, which decreased somewhat during the daytime, whereas S. kamschaticum and S. sarmentosum displayed the opposite pattern. This result is similar to the diurnal patterns of changes in pH in the three plant species, which suggests a relationship between pH and ionic contents. S. sarmentosum showed lower osmolality under drought stress than in the control condition, whereas the osmolality of Kalancoe and S. kamschaticum did not differ between conditions. S. sarmentosum may have maintained internal water content by lowering its osmolality and raising its total ionic contents. In conclusion, Kalancoe displayed the characteristic responses of a typical CAM plant, whereas S. kamschaticum and S. sarmentosum displayed aspects of the C3 photosynthetic pattern under drought conditions. These results suggest that S. kamschaticum and S. sarmentosum (Crassulacea) in Korea overcome drought stress by increasing solute and ionic contents internally rather than changing their photosynthetic pattern from C3 to CAM under drought stress.

토양의 수분과 유기물이 멸종위기식물 큰바늘꽃(Epilobium hirsutum L.)의 번식계절 및 생리 반응에 미치는 영향 (Effect of Moisture and Nutrient of Soil on Reproductive Phenology and Physiological Response of Epilobium hirsutum L., an Endangered Plant)

  • 이응필;이수인;한영섭;이승연;유영한;조이연
    • 한국습지학회지
    • /
    • 제20권1호
    • /
    • pp.27-34
    • /
    • 2018
  • 본 연구에서는 멸종위기식물인 큰바늘꽃(Epilobium hirsutum L.)의 효과적인 보전 및 복원을 위한 기초자료를 얻기 위해 토양의 수분함량과 유기물함량이 번식계절과 생리 반응에 어떠한 영향을 주는지에 대하여 알아보았다. 큰바늘꽃은 다년생식물이지만 모든 구배에서 한 해에 생식생장을 하였다. 꽃봉오리, 꽃 그리고 열매주머니는 수분구배와 영양소구배에서 각각 높은 수분 조건과 높은 유기물 조건에서 가장 이른 시기에 성숙하였다. 그리고 꽃 수와 열매주머니 수는 높은 수분 조건과 높은 유기물 조건에서 더 빨리 증가하였다. 엽록소 함량은 수분구배에서 높은 중간 수분 조건과 높은 수분 조건에서 가장 많았고, 영양소구배에서는 차이가 없었다. 최소엽록소형광 값은 수분구배와 영양소구배 모두 차이가 없었고, 최대엽록소형광 값은 높은 수분 조건과 높은 유기물 조건에서 가장 높았다. 광계 II의 광화학적 효율 값은 모든 수분구배에서 0.75로 차이가 없었고, 영양소구배에서의 경우 높은 유기물 조건에서 0.78로 가장 높았다. 큰바늘꽃은 수분이 증가할수록 엽록소 함량이 많아지고, 유기물이 증가할수록 Fv/Fm 값이 높아졌다. 이상의 연구결과는 토양의 충분한 수분과 유기물 함량은 큰바늘꽃의 번식계절을 앞당겨 주고 생식생장을 촉진한다는 것을 보여준다. 추후 멸종위기종인 큰바늘꽃의 개체군 유지와 서식지를 관리하는데 중요한 정보가 될 것으로 판단된다.

The effects of LEDs and duty ratio on the growth and physiological responses of Silene capitata Kom., endangered plant, in a plant factory

  • Park, Jae-Hoon;Lee, Eung-Pill;Han, Young-Sub;Lee, Soo-In;Cho, Kyu-Tae;Hong, Yong-Sik;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • 제42권4호
    • /
    • pp.174-182
    • /
    • 2018
  • Background: In this study, we observed their growth and physiological responses using a variety of duty ratio under the mixed light using red, blue, and white lights. The red+blue mixed light was treated with 95%, 90%, 85%, 80%, and 75% duty ratios and red+blue+white mixed light with 85% and 70% duty ratios. We examined the width and length of leaves, total number of leaves, and number of shoots to examine their growth responses. The physiological responses were studied by measuring their photosynthetic rate, transpiration rate, stomatal conductance, water use efficiency, chlorophyll content, and fluorescence ($F_o$, $F_m$, and $F_v/F_m$). Results: We found that lower duty ratio caused the length and width of the leaves to grow longer under red+blue mixed light but that it did not cause any difference in the red+blue+white mixed light condition. In addition, there was no difference in the number of leaves and shoots among all treatments. In the red+blue mixed light condition, the photosynthetic rate was no difference, but both transpiration rate and stomatal conductance were the highest at 95% duty ratio than in other ratios. Water use efficiency pattern was similar to that of photosynthetic rate; water use efficiency was no difference. Chlorophyll content was the highest at 95% duty ratios, and it was the least at 90%, 85%, and 75% duty ratio. $F_o$ and $F_m$ values were relatively high at 85% and 80% duty ratio and low at 90% duty ratio while $F_v/F_m$ showed no difference. Conclusions: Under the red+blue+white mixed light, all physiological items showed no difference between 70 and 85% treatments. But, photosynthetic rate, water use efficiency, chlorophyll content, and $F_v/F_m$ were relatively greater in the red+blue+white mixed light than in the red+blue mixed light. Therefore, red+blue+white mixed light treated with 70% duty ratio could lessen the environmental stress and save more power when cultivating Silene capitata in a plant factory.

경기북부 주요 하천 내 동물플랑크톤 군집특성 조사 연구 (Investigation of Zooplankton Communities in Streams in Northern Gyeonggi-do Province)

  • 고순미;임흥빈;정은희;김태열;김재광;최정인;이호정;오조교
    • 한국환경보건학회지
    • /
    • 제45권5호
    • /
    • pp.426-433
    • /
    • 2019
  • Objectives: Zooplankton communities play important roles in aquatic ecosystems as secondary producers that graze on phytoplankton and in turn are preyed upon by planktivorous and juvenile fish. They can shift their distribution, species composition, and abundance in response to environmental changes. Therefore zooplankton communities are important for understanding the energy flow in aquatic ecosystems and can be valuable indicators of environmental conditions. However, zooplankton in streams are still not well-studied, especially in northern Gyeonggi-do Province. This study aims to investigate the zooplankton communities in major streams in northern Gyeonggi-do Province. Methods: Zooplankton is important in the nutrient cycle and energy flow of aquatic ecosystems. Therefore, we surveyed zooplankton and measured temperature, DO, BOD, COD, T-N, T-P, and Chl-a in major streams (Sincheon, Gongneungcheon, Wangsukcheon, and Gapyeongcheon Streams) and stagnant water (Gomoji Reservoir). Results: The water quality in Gapyeongcheon Stream was the highest grade, while that of Gomoji Reservoir was mesoeutrophic and eutrophic during the research period. In the zooplankton community, Nauplius, Rotaria, and Monostyla spp. were dominant in Sincheon, Gongneungcheon, and Wangsukcheon Streams, and the dominance index was also high. In the case of Gapyeongcheon Stream, it was found that water quality and aquatic ecosystem health were good, and the lowest dominance index reflected this. In Gomoji Reservoir, Polyarthra spp., Nauplius, and Bosmina longirostris, which can be easily observed as eutrophication progresses, showed a high dominance rate. Therefore, it is necessary to monitor the progress of eutrophication in further research. Conclusions: We collected data on the zooplankton communities in streams and investigated their characteristics. As a result, specific species were found to be dominant at each survey sites and some of them are known to be observed as eutrophication progresses. Therefore, we should investigate the zooplankton community of streams around us and apply ecological stream management.

Growth performance of planted population of Pinus roxburghii in central Nepal

  • Tiwari, Achyut;Thapa, Nita;Aryal, Sugam;Rana, Prabina;Adhikari, Shankar
    • Journal of Ecology and Environment
    • /
    • 제44권4호
    • /
    • pp.264-274
    • /
    • 2020
  • Background: Climate change has altered the various ecosystem processes including forest ecosystem in Himalayan region. Although the high mountain natural forests including treelines in the Himalayan region are mainly reported to be temperature sensitive, the temperature-related water stress in an important growth-limiting factor for middle elevation mountains. And there are very few evidences on growth performance of planted forest in changing climate in the Himalayan region. A dendrochronological study was carried out to verify and record the impact of warming temperature tree growth by using the tree cores of Pinus roxburghii from Batase village of Dhulikhel in Central Nepal with sub-tropical climatic zone. For this total, 29 tree cores from 25 trees of P. roxburghii were measured and analyzed. Result: A 44-year long tree ring width chronology was constructed from the cores. The result showed that the radial growth of P. roxburghii was positively correlated with pre-monsoon (April) rainfall, although the correlation was not significant and negatively correlated with summer rainfall. The strongest negative correlation was found between radial growth and rainfall of June followed by the rainfall of January. Also, the radial growth showed significant positive correlation with that previous year August mean temperature and maximum temperature, and significant negative correlation between radial growth and maximum temperature (Tmax) of May and of spring season (March-May), indicating moisture as the key factor for radial growth. Despite the overall positive trend in the basal area increment (BAI), we have found the abrupt decline between 1995 and 2005 AD. Conclusion: The results indicated that chir pine planted population was moisture sensitive, and the negative impact of higher temperature during early growth season (March-May) was clearly seen on the radial growth. We emphasize that the forest would experience further moisture stress if the trend of warming temperatures continues. The unusual decreasing BAI trend might be associated with forest management processes including resin collection and other disturbances. Our results showed that the planted pine forest stand is sub-healthy due to major human intervention at times. Further exploration of growth climate response from different climatic zones and management regimes is important to improve our understanding on the growth performance of mid-hill pine forests in Nepal.