• Title/Summary/Keyword: ecological concrete

검색결과 169건 처리시간 0.025초

식생블록옹벽의 구조적 안전성 해석과 보강설계기법 연구 (Development of Strengthening Method and Safety Analysis of Ecological Block and Vegetation Bank Protection)

  • 오병환;조인호;이영생;이근희
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제7권1호
    • /
    • pp.207-215
    • /
    • 2003
  • Developed is a new environment-friendly concrete-block retaining wall system. The conventional analysis methods are not directly applicable because the proposed concrete-block wall system is made of by interlocking the blocks with shear keys. Therefore, the shear analysis as well as stability analysis have been conducted to secure the safety of block-wall system. Overall slope stability analysis was also performed. An appropriate strengthening method was developed to ensure the safety when the block-wall system is relatively high. The method of analysis for strengthening the concrete-block wall system was also proposed. The proposed environment-friendly concrete block retaining wall system shows reasonable safety and can be a good construction method for retaining walls and river bank walls.

기능성 경량기포콘크리트의 물리적 특성에 관한 실험적 연구 (A Study of Mechanical characteristics of functional Autoclaved Lightweight Concrete)

  • 김순호;김홍룡
    • KIEAE Journal
    • /
    • 제7권5호
    • /
    • pp.121-126
    • /
    • 2007
  • This is the experimental study on the functional property of the light-weight concrete according to the mineral composite. According to the increase of the functional mineral, Autoclaved light-weight concrete (ALC) have a effect of high far infrared ray, deodorization, anion and change of chromaticity on D65 of light source. Compressive strength and change of specific gravity by foaming of Mixed Slurry in accordance with additive rates and Water. It chracterizes surface by SEM, chemical component and crystallization by XRD, XRF. the results of this experiment studied influences of ALC by functional minerals.

다공질 콘크리트를 이용한 식생용 콘크리트 특성 - 다공질 콘크리트의 물리화학적 특성을 중심으로 - (The Properties of Concretes for Planting Vegetations Based on Porous Concretes)

  • 구본학;김용규
    • 한국환경복원기술학회지
    • /
    • 제2권2호
    • /
    • pp.62-69
    • /
    • 1999
  • This study was carried out to find out the capability of applying such materials as porous concrete, could be called environmentally friendly materials, for bringing vegetations. For verying the purpose of the experiments such materials as potland cement and slag cement, coarse aggravates(${\phi}25mm$, ${\phi}18mm$, ${\phi}13mm$) were mixed. In the voids of porous concrete peatmoss and chemical fertilizers were filled, and on the surface of concrete organic soils were adhered for seeding grasses. For testing compressive strength, pH, voids the 12($4mixed{\times}3times$) specimens were manufactured. As results, the compressive strength of porous concretes were from 59 to $267kg/cm^2$ depend on mixed ratios between cements and coarse aggregates. Voids of concrete were from 33% to 40% and the pH were varied pH 8-10.5. So the capability of planting vegetations was to be ascertained. The germination and growth of grasses were not good, but it could be found out that the capability of vegetations on the concretes. For generalizing these results and applying on the construction sites, it is necessary to verificate following studies for various conditions.

  • PDF

패각류를 잔골재 대체재로 사용한 철근콘크리트 기둥의 내력 및 거동에 관한 실험적 연구 (An Experimental Study on the Strength and Behavior of Reinforced Concrete Columns Containing Shells Substituted a Fine Aggregate)

  • 구해식
    • KIEAE Journal
    • /
    • 제8권3호
    • /
    • pp.69-76
    • /
    • 2008
  • This is an experimental study on the maximum load value and structural behavior of reinforced concrete columns containing shells as a substitute fine aggregate of concrete, through making reinforced concrete test columns with shells. In this study, the main factors consist of the grain sizes and the percentage of substitution of shells to fine aggregate in two kinds of water cement ratio. The results of the study showed as followed. The maximum load value decreased with increased the rate of substitution about shells and as the grain size of shells became smaller, the load values of them were somewhat changed higher but it is important that we must consider absorption rate of shells sufficiently. If we have a proper water cement ratio in column productions containing the shells, we can meet the requirement of the percentage of substitution until 30%. The deflection and deformation properties of reinforced concrete columns with shells represented typical curves like that of normal reinforced concrete. But as the failture types, they are able to make some change without being out of the fundamental graph forms. After the analyzing structural behaviors and the properties of reinforced concrete test columns containing shells, the most excellent grain size of shells represented 3.0mm and less with taking uniformly, and the percentage of practicable substitution of them to fine aggregate was about 30%.

A review on the effect of marble waste on properties of green concrete

  • Rachid Djebien;Amel Bouabaz;Yassine Abbas;Yasser N. Ziada
    • Advances in concrete construction
    • /
    • 제15권1호
    • /
    • pp.63-74
    • /
    • 2023
  • All production and consumption activities produce wastes, which often cause damage to our environment and multiple risks to the human health. The valorization of these wastes in concrete technology is a future solution that will allow finding other construction materials sources, optimizing energy consumption and protecting the environment. Among these wastes, there is the marble waste. Every year, huge amount of marble waste is discarded as dust or aggregates form, in open-air storage areas causing serious problems for the environment and public health. In this context, the incorporation of marble waste as a replacement of ordinary aggregates or cement in concrete composition is actively investigated by researchers. This paper presents a comprehensive review of published studies over the last 20 years, dealing the effect of marble waste on fresh and hardened properties of concrete. Most of the studies carried out have used marble waste as dust with substitution rates between 5 and 20%. Besides the economic and ecological benefits, this review showed that marble waste can improve the physical, mechanical and durability properties of concrete. This improvement depends on the form (dust, fine aggregate or coarse aggregate), substitution method (as cement or aggregates replacement) and substitution rate of marble waste. Additionally, the review results showed that the use of 10-15% of marble waste dust as cement substitution can lead to increase the compressive strength.

수변공간을 활용한 오염부하 저감 및 차단 융복합 기술의 하천 적용성 평가 (Assessment of the Applicability of Convergence Technology for Reducing and Blocking Pollution Loads to Rivers through the Utilization of Waterfront Spaces)

  • 김봉균;서대석;오종민;박재로
    • Ecology and Resilient Infrastructure
    • /
    • 제3권4호
    • /
    • pp.238-246
    • /
    • 2016
  • 본 연구에서는 그동안 방치되어 왔던 하천 제방 및 둔치 등의 수변공간에 저류지, 인공습지 및 생태호안의 세가지 요소기술을 연계 활용한 수질정화시설을 제조하여 설치한 뒤 강우시 및 비강우시에 따라 성능을 분석하였다. 연구 결과에 따르면 강우시에는 SS, BOD, T-N, T-P에 대하여 평균 48.6%, 30.5%, 18.4%, 27.3%의 제거효율을 보였으며, 비강우시에는 33.2%, 28.6%, 13.7%, 17.3%로 나타났다. 그러므로 본 연구에서 수변공간을 활용하여 설치한 수질정화시설은 강우시 및 비강우시의 운전방법에 따라서 충분한 제거효율을 보이는 것으로 나타났다.

도시개발의 경관생태적 성능 평가를 위한 경관생태관리시스템(LEMS) 구축에 관한 연구 (The Landscape Ecological Management System (LEMS) for Assessing the Landscape Ecological Performance of Urban Developments)

  • 오규식;이동우
    • 한국환경복원기술학회지
    • /
    • 제15권5호
    • /
    • pp.49-67
    • /
    • 2012
  • Studies on landscape ecology have focused on conceptual aspects, while empirical focus for spatial planning has been rarely conducted. This study conducted an empirical analysis to enhance landscape ecological performance of urban developments using landscape ecology. To do so, concrete criteria and standards to analyze structural, functional and variational mechanisms of urban landscape ecology were developed. An integrated landscape ecology assessment model that can be applied to urban development planning was established by combining the criteria. Next, Landscape Ecological Management System (LEMS) was developed to implement an integrated assessment using GIS. To verify the effectiveness of the system, a case study was conducted using LEMS on Byulnae City in the Seoul Metropolitan Area. The LEMS can be useful for urban planners and policy makers in their selection of desirable planning alternatives. Moreover, the LEMS developed in this study can be a useful tool for academia in terms of the implementation of further related studies, and for planning professionals in their environmental impact assessment tasks.

PCM 혼입 경량기포콘크리트 패널 개발을 위한 기초적 연구 ((An) experimental study on the development of lightweight concrete using the PCM)

  • 임명관;오돈투야;김영호;최동욱
    • KIEAE Journal
    • /
    • 제14권4호
    • /
    • pp.133-138
    • /
    • 2014
  • The present study was carried out to assess the basic material properties and thermal behavior of light-weight foamed concrete panel mixed with PCM (Phase Changing Material). To do so, this study fabricated light-weight foamed concrete (1.0kg/m3) in pre-foaming method and mixed it with PCM micro capsule of 1-dodecanol and melamine to examine its physical and thermal properties. The results confirmed strength reinforcement effect by proper replacement ratio of fly-ash, which is an industrial by-product, and PCM. In addition, it found out that PCM-mixed light-weight foamed concrete had time delay and temperature reduction effect within the range of PCM phase transition according to the rise of outdoor temperature. It was also observed that the insulation performance of PCM-mixed light-weight foamed concrete was more dependent upon thickness than PCM replacement ratio.

친환경 무시멘트 황토결합재의 적용가능성에 관한 연구 (A study on possibility of application of non-cement Hwang-to binder for Environment-friendly)

  • 황혜주;강남이
    • KIEAE Journal
    • /
    • 제8권1호
    • /
    • pp.81-86
    • /
    • 2008
  • Due to the recent environmental problems, lots of studies on the solutions to reduce the environmental pollutions are on the way. In the field of construction, concrete that we are currently consuming approximately 1 ton each year is the most common and cheap building material. We must cut down on this preoccupied use of this material and develop an alternative material as recommended by the late environmental standards. In this regard, this study propose the 'yellow soil' as the main substance that composes the final state, 'yellow soil concrete'. This study also aims to analyze the physical and chemical performances of this concrete mixed with the yellow soil by comparing it with the cement and assesses the possibility of its application to the cement. The results of the experiment shows that, assuming the solidity of the cement concrete to be around $210kg/cm^2$ (20.58MPa), the solidity of the yellow soil combined material may be around 45%~55% in terms of the range of W/B use, 200 to 400 in the per unit fission amount and less than 2% in the addition proportion of admixing agents. But the scope of the optimal concoction amount of the yellow soil concrete should better be limited as following. 40% to 50% in W/B, 300 to 400 in the per unit fission amount and less than 2% in the addition of admixing agents.

Strength properties of concrete with fly ash and silica fume as cement replacing materials for pavement construction

  • Chore, Hemant Sharad;Joshi, Mrunal Prashant
    • Advances in concrete construction
    • /
    • 제12권5호
    • /
    • pp.419-427
    • /
    • 2021
  • The overuse level of cement for civil industry has several undesirable social and ecological consequences. Substitution of cement with industrial wastes, called by-products, such as fly ash, ground granulated blast furnace slag, silica fume, metakaoline, rice husk ash, etc. as the mineral admixtures offers various advantages such as technical, economical and environmental which are very important in the era of sustainability in construction industry. The paper presents the experimental investigations for assessing the mechanical properties of the concrete made using the Pozzolanic waste materials (supplementary cementitious materials) such as fly ash and silica fume as the cement replacing materials. These materials were used in eight trial mixes with varying amount of ordinary Portland cement. These SCMs were kept in equal proportions in all the eight trial mixes. The chemical admixture (High Range Water Reducing Admixture) was also added to improve the workability of concrete. The compressive strengths for 7, 28, 40 and 90 days curing were evaluated whereas the flexural and tensile strengths corresponding to 7, 28 and 40 days curing were evaluated. The study corroborates that the Pozzolanic materials used in the present investigation as partial replacement for cement can render the sustainable concrete which can be used in the rigid pavement construction.