• Title/Summary/Keyword: eco-efficient

Search Result 338, Processing Time 0.026 seconds

The Flora of Vascular Plants in Mt. Chijae(Gamagol) and Its Adjacent Areas (in Damyang-gun, Jeonnam-do, Korea) (담양군 치재산(가마골) 일원 관속식물상)

  • Soon-Ho Shin;Kyoung-Pae Yun;Sang-Mi Kim;HyunSuk Kim
    • Korean Journal of Environment and Ecology
    • /
    • v.38 no.1
    • /
    • pp.22-47
    • /
    • 2024
  • This study aims to reveal the distribution of native plants, rare plants, and specialty plants and provides basic data for efficient ecosystem management through a survey of the flora in Mt. Chijae (Gamagol) and its adjacent areas in Damyang-gun, Jeonnam-do, while also identifying useful plants in the eco-city Damyang-gun for distinctive garden plants. A total of 21 field surveys were conducted from March 2022 to June 2023 to collect and identify 492 taxa consisting of 101 families, 304 genera, 444 species, 10 subspecies, 35 varieties, and 3 formas. The analysis of the prepared sample list showed 14 taxa designated as specialty plants, 9 taxa designated as rare plants by the Korea Forest Service, 7 taxa designated as the national red (i.e., endangered) plants by the Ministry of Environment, and 68 taxa with phylogenetic specific species, of which 45 taxa for Grade I, 5 taxa for Grade II, 16 taxa for Grade III, and 2 taxa for Grade IV were confirmed. The list included 155 taxa of biological resources subject to export approval by the Ministry of Environment and 38 taxa of alien plants of which 7.7 percent were naturalized, and the urbanization index was 6.1 percent. Four taxa were ecosystem-disturbing invasive alien plants designated by the Ministry of Environment introduced artificially or naturally from abroad. This study is expected to contribute to creating unique and attractive landscapes in Damyang if the specific plants found in Mt. Chijae are grown and planted in city gardens.

Seasonal variation in longitudinal connectivity for fish community in the Hotancheon from the Geum River, as assessed by environmental DNA metabarcoding

  • Hyuk Je Lee;Yu Rim Kim;Hee-kyu Choi;Seo Yeon Byeon;Soon Young Hwang;Kwang-Guk An;Seo Jin Ki;Dae-Yeul Bae
    • Journal of Ecology and Environment
    • /
    • v.48 no.1
    • /
    • pp.32-48
    • /
    • 2024
  • Background: Longitudinal connectivity in river systems strongly affects biological components related to ecosystem functioning, thereby playing an important role in shaping local biodiversity and ecosystem health. Environmental DNA (eDNA)-based metabarcoding has an advantage of enabling to sensitively diagnose the presence/absence of species, becoming an efficient/effective approach for studying the community structure of ecosystems. However, little attention has been paid to eDNA-based biomonitoring for river systems, particularly for assessing the river longitudinal connectivity. In this study, by using eDNA we analyzed and compared species diversity and composition among artificial barriers to assess the longitudinal connectivity of the fish community along down-, mid- and upstream in the Hotancheon from the Geum River basin. Moreover, we investigated temporal variation in eDNA fish community structure and species diversity according to season. Results: The results of species detected between eDNA and conventional surveys revealed higher sensitivity for eDNA and 61% of species (23/38) detected in both methods. The results showed that eDNA-based fish community structure differs from down-, mid- and upstream, and species diversity decreased from down to upstream regardless of season. We found that there was generally higher species diversity at the study sites in spring (a total number of species across the sites [n] = 29) than in autumn (n = 27). Nonmetric multidimensional scaling and heatmap analyses further suggest that there was a tendency for community clusters to form in the down-, mid- and upstream, and seasonal variation in the community structure also existed for the sites. Dominant species in the Hotancheon was Rhynchocypris oxycephalus (26.07%) regardless of season, and subdominant species was Nipponocypris koreanus (16.50%) in spring and Odontobutis platycephala (15.73%) in autumn. Artificial barriers appeared to negatively affect the connectivity of some fish species of high mobility. Conclusions: This study attempts to establish a biological monitoring system by highlighting the versatility and power of eDNA metabarcoding in monitoring native fish community and further evaluating the longitudinal connectivity of river ecosystems. The results of this study suggest that eDNA can be applied to identify fish community structure and species diversity in river systems, although some shortcomings remain still need to be resolved.

Development of Benthic Macroinvertebrates Index (BMI) for Biological Assessment on Stream Environment (하천환경의 생물학적 평가를 위한 저서동물지수(BMI)의 개발)

  • Kong, Dongsoo;Son, Se-Hwan;Hwang, Soon-Jin;Won, Doo Hee;Kim, Myoung Chul;Park, Jung Ho;Jeon, Te Su;Lee, Jong Eun;Kim, Jong Hyun;Kim, Jong Sun;Park, Jaeheung;Kwak, Inn Sil;Ham, Sun Ah;Jun, Yung-Chul;Park, Young-Seuk;Lee, Jae-Kwan;Lee, Su-Woong;Park, Chang-Hee;Moon, Jeong-Suk;Kim, Jin-Young;Park, Hae Kyung;Park, Sun Jin;Kwon, Yongju;Kim, Piljae;Kim, Ah Reum
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.2
    • /
    • pp.183-201
    • /
    • 2018
  • The tolerance of Korean benthic macroinvertebrates to organic pollution has been analyzed since the early 1990s. However, considering the fact that there have been related studies carried out in some European countries since the early 20th century, the history of the research in Korea is very short and there is still much knowledge to supplement. We revised the saprobic valency, the saprobic value and the indicator weight value of 190 benthic macroinvertebrates taxa through the data of water quality and individual abundance collected from 7,086 sampling units in Korea from 2008 to 2014. The individual abundance of Uracanthella (Ephemeroptera) as a representative, one of the most common and abundant taxa in Korea, showed a typical lognormal distribution to 5-day biochemical oxygen demand (BOD5) concentration, and a normal distribution to the class interval of BOD5 concentration according to saprobic series. The value combining the mean individual abundance and the relative frequency of occurrence was a more efficient indicator value than that of each property alone. Benthic Macroinertebrates Index (BMI) was newly proposed as a modification of the saprobic index of Zelinka and Marvan (1961). BMI showed extremely significant correlation (determination coefficient $r^2$ > 0.6, n = 569 sites) with the concentration of BOD5, and the coefficient was a little higher than those of the previous indices. Until now, there has been very little research on the assessment of biological integrity of benthic macroinvertebrates community in Korea. While continuing researches into improve the reliability of BMI, it is necessary to develop multimetric indices for evaluating the integrity, including the composition of species and functional guilds, and the richness and diversity of the community.

A Prediction Model for Removal of Non-point Source Pollutant Considering Clogging Effect of Sand Filter Layers for Rainwater Recycling (빗물 재활용을 위한 모래 정화층의 폐색특성을 고려한 비점오염원 제거 예측 모델 연구)

  • Ahn, Jaeyoon;Lee, Dongseop;Han, Shinin;Jung, Youngwook;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.6
    • /
    • pp.23-39
    • /
    • 2014
  • An artificial rainwater reservoir installed in urban areas for recycling rainwater is an eco-friendly facility for reducing storm water effluence. However, in order to recycle the rainwater directly, the artificial rainwater reservoir requires an auxiliary system that can remove non-point source pollutants included in the initial rainfall of urban area. Therefore, the conventional soil filtration technology is adopted to capture non-point source pollutants in an economical and efficient way in the purification system of artificial rainwater reservoirs. In order to satisfy such a demand, clogging characteristics of the sand filter layers with different grain-size distributions were studied with real non-point source pollutants. For this, a series of lab-scale chamber tests were conducted to make a prediction model for removal of non-point source pollutants, based on the clogging theory. The laboratory chamber experiments were carried out by permeating two types of artificially contaminated water through five different types of sand filter layers with different grain-size distributions. The two artificial contaminated waters were made by fine marine-clay particles and real non-point source pollutants collected from motorcar roads of Seoul, Korea. In the laboratory chamber experiments, the concentrations of the artificial contaminated water were measured in terms of TSS (Total Suspended Solids) and COD (Chemical Oxygen Demand) and compared with each other to evaluate the performance of sand filter layers. In addition, the accumulated weight of pollutant particles clogged in the sand filter layers was estimated. This paper suggests a prediction model for removal of non-point source pollutants with theoretical consideration of the physical characteristics such as the grain-size distribution and composition, and change in the hydraulic conductivity and porosity of sand filter layers. The lumped parameter ${\theta}$ related with the clogging property was estimated by comparing the accumulated weight of pollutant particles obtained from the laboratory chamber experiments and calculated from the prediction model based on the clogging theory. It is found that the lumped parameter ${\theta}$ has a significant influence on the amount of the pollutant particles clogged in the pores of sand filter layers. In conclusion, according to the clogging prediction model, a double-sand-filter layer consisting of two separate layers: the upper sand-filter layer with the effective particle size of 1.49 mm and the lower sand-filter layer with the effective particle size of 0.93 mm, is proposed as the optimum system for removing non-point source pollutants in the field-sized artificial rainwater reservoir.

A Study on the Au Recoverability from Mongolian Tailings (몽골 광미로부터 Au 회수 가능성에 관한 연구)

  • Ko, Chin-Surk;Burentogtokh, Togtokhmaa;Lee, Jong-Ju;Park, Cheon-Young
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.1
    • /
    • pp.41-51
    • /
    • 2020
  • The purpose of this study was to investigate the possibility of eco-friendly/efficient recovery of valuable resources, such as Au from mine tailings, which are environmental pollutants in the Mongolian mine sector. For this purpose, this study selected 4 place of mine tailings of the Mongolian mines sector and carried out mineralogy evaluation of the valuable resources in the tailings. In this study, flotation was performed to separate and concentrate valuable resources in the tailings. Microwave nitric acid leaching was used to leach the valuable resources contained in the sample and to improve the Au grade. Chloride leaching attempted to leach Au from the leaching residues. XRD analysis of the tailings samples showed that most of the samples consisted of silicate minerals. As a result of confirming the content of the element through XRF analysis, the SiO2 content was very high, the Fe2O3 content was 2.32-4.23%, and the content of PbO, CuO and ZnO components were all within 2%. As a result of flotation for the tailings samples, the recovery of Au was the highest in Bayanairag sample (95.38%). As a result of microwave nitric solution experiment on Au concentrate sample obtained by flotation, the content of Au in the microwave nitrate leaching residue increased by 12.15% from 192.72 g/ton to 216.14g/ton in Khamo sample, the highest increase was 57.58% in Bayanairag sample. TCLP tests on tailings generated after flotation showed dissolution characteristics within EPA. Chloride leaching test was performed to recover Au from solid residues. The leaching rate was 87.43-89.35% within 10 minutes. For Khamo sample, 100% Au was leached after 60 minutes of leaching time. Therefore, in order to process the tailings continuously generated in Mongolia, applying the same process as the present study is expected to effectively recover the valuable resources contained in the tailings.

Determining the Locations of Washland Candidates in the Four Major River Basins Using Spatial Analysis and Site Evaluation (공간분석 및 현장조사 평가 기법을 활용한 4대강 강변저류지 조성 후보지 선정)

  • Jeong, Kwang-Seuk;Shin, Hae-Su;Jung, Ju-Chul;Kim, Ik-Jae;Choi, Jong-Yun;Jung, In-Chul;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.44-54
    • /
    • 2010
  • In this study, a comprehensive exploration and evaluation of washland candidate locations by means of field monitoring as well as spatial analysis in six major river system (Han, Nakdong, Nam, Geum, Youngsan, and Seomjin Rivers). Washland(in other words, river detention basin) is an artificial wetland system which is connected to streams or rivers likely to riverine wetlands. Major purpose of washland creation is to control floodings, water supply and purification, providence of eco-cultural space to human and natural populations. Characteristics and functions of riverine wetlands can be expected as well, thus it is believed to be an efficient multi-purpose water body that is artificially created, in terms of hydrology and ecology. Geographical information and field monitoring results for the washland candidate locations were evaluated in 2009, with respect to optimal location exploration, ecosystem connectivity and educational-cultural circumstances. A total of $269\;km^2$ washland candidate locations were found from spatial analysis (main channel of Rivers South Han, 71.5; Nakdong 54.1; Nam, 2.3; Geum, 79.0; Youngsan 46.4; Seomjin 15.7), and they tended to be distributed in mid- to lower part of the rivers to which tributaries are confluent. Field monitoring at 106 sites revealed that some sites located in the Rivers Nam and Geum is appropriate for restoration or artificial creation as riverine wetlands. Several sites in the Nakdong and Seomjin Rivers were close to riverine wetlands (e.g., Upo), habitats of endangered species (e.g., otters), or adjacent to educational facility (e.g., museums) or cultural heritages (e.g., temples). Those sites can be utilized in hydrological, ecological, educational, and cultural ways when evidence of detailed hydrological evaluation is provided. In conclusion, determination of washland locations in the major river basins has to consider habitat expansion as well as hydrological function (i.e. flood control) basically, and further utility (e.g. educational function) will increase the values of washland establishment.

Exploring the Priority Area of Policy-based Forest Road Construction using Spatial Information (공간정보를 활용한 산림정책 기반 임도시공 우선지역 선정 연구)

  • Sang-Wook, LEE;Chul-Hee, LIM
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.4
    • /
    • pp.94-106
    • /
    • 2022
  • In order to increase timber self-sufficiency, Korea's 6th Basic Forest Plan aims to increase the density of forest roads to 12.8 m ha-1 by 2037. However, due to rapid re-forestation, current management infrastructure is insufficient, with just 4.8 m ha-1 of forest roads in 2017. This is partly due to time and cost limitations on the process of forest road feasibility evaluation, which considers factors such as topography and forest conditions. To solve this problem, we propose an eco-friendly and efficient forest road network planning method using a geographic information system (GIS), which can evaluate a potential road site remotely based on spatial information. To facilitate such planning, this study identifies forest road construction priorities that can be evaluated using spatial information, such as topography, forest type and forest disasters. A method of predicting the optimal route to connect a forest road with existing roads is also derived. Overlapping analysis was performed using GIS-MCE (which combines GIS with multi-criteria evaluation), targeting the areas of Cheongsong-gun and Buk-gu, Pohang-si, which have a low forest-road density. Each factor affecting the suitability of a proposed new forest road site was assigned a cost, creating a cost surface that facilitates prioritization for each forest type. The forest path's optimal route was then derived using least-cost path analysis. The results of this process were 30 forestry site recommendations in Cheongsong-gun and one in Buk-gu, Pohang-si; this would increase forest road density for the managed forest sites in Cheongsong-gun from 1.58 m ha-1 to 2.55 m ha-1. This evaluation method can contribute to the policy of increasing timber self-sufficiency by providing clear guidelines for selecting forest road construction sites and predicting optimal connections to the existing road network.

Isolation and Identification of Competitive Fungi on Medium for Black Wood Ear Mushroom in Korea and In Vitro Selection of Potential Biocontrol Agents (목이버섯 배지 오염 곰팡이균의 분리, 동정 및 생물학적 방제제 선발)

  • Seoyeon Kim;Miju Jo;Sunmin An;Jiyoon Park;Jiwon Park;Sungkook Hong;Jiwoo Kim;Juhoon Cha;Yujin Roh;Da Som Kim;Mi jin Jeon;Won-Jae Chi;Sook-Young Park
    • Research in Plant Disease
    • /
    • v.30 no.1
    • /
    • pp.66-77
    • /
    • 2024
  • Black wood ear mushroom (Auricularia auricula-judae) is one of the most economically important mushrooms in China, Japan, and Korea. The cultivation of wood ear mushrooms on artificial substrates is more efficient in terms of time and cost compared with their natural growth on trees. However, if the substrate cultivation is infected by fast-growing fungi, the relatively slow-growing ear mushroom will be outcompeted, leading to economic losses. In this study, we investigated the competitive fungal isolates from substrates infected with fast-growing fungi for the cultivation of ear mushrooms in Jangheung and Sunchon, Korea. We collected 54 isolates and identified them by sequencing their internal transcribed spacer region with morphological identification. Among the isolates, the dominant isolates were Trichoderma spp. (92.6%), Penicillium spp. (5.6%), and Talaromyces sp. (1.8%). To find an appropriate eco-friendly biocontrol agent, we used five Streptomyces spp. and Benomyl, as controls against Trichoderma spp. and Penicillium spp. Among the six Streptomyces spp., Streptomyces sp. JC203-3 effectively controlled the fungi Trichoderma spp. and Penicillium spp., which pose a significant problem for the substrates of black wood ear mushrooms. This result indicated that this Streptomyces sp. JC203-3 can be used as biocontrol agents to protect against Trichoderma and Penicillium spp.