• Title/Summary/Keyword: eco friendly

Search Result 3,273, Processing Time 0.031 seconds

A Study on the Prevention Effect of Lateral Movement by Finite Element Analysis (유한요소해석에 의한 측방이동 방지효과에 대한 연구)

  • Park, Choon-Sik;Rho, Tae-Kyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.71-82
    • /
    • 2018
  • This study presents a reasonable and economical DCM reinforcement length for the various factors (the embankment height, the distance from the embankment to the underground structure, the depth of the soft ground, and the compression index and the swelling index of the soft ground) that affect the stability of the structure due to lateral movement. Based on these results, we analyzed each factor's degree of influence and figured out which factor influenced the lateral movement most. The cross section of the embankment on the soft ground was modeled by using the Finite Element Program and reinforced with DCM. The results show that the increase rate of the reinforcement length with the increase of the embankment height is about 9~50%, the increase rate of the reinforcement length with the depth of soft ground is about 13~30%, and the increase rate of the reinforcement length with increasing compression index is about 3~25%. In addition, the influence of each factor on each other was analyzed. As a result, among the separation distance, the compressive index and the maximum to minimum slope ratio of the reinforcement length of the embankment height, the separation distance was the largest for the depth of soft ground. As the depth of the soft ground increases, the ratio of the maximum to minimum slope of the reinforcement length according to the embankment height is 3.75, the ratio of the maximum to minimum slope of the reinforcement length according to the spacing distance is 4.3, and the ratio of maximum to minimum slope according to compression index is 2.5. From these results, it is confirmed that the three factors are greatly affected by the depth of soft ground.

Separation Characteristic and Recycling of Excavated Materials Containing Waste (폐기물혼입굴착물의 선별특성과 재활용성 평가)

  • Lee, Suyoung;Kim, Kyuyeon;Jeon, Taewan;Shin, Sunkyoung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.2
    • /
    • pp.5-12
    • /
    • 2019
  • The study is carried out to survey the proper management and to propose an eco - friendly separation system through efficient screening and resource recovery of excavated materials containing waste from various excavating fields such as reconstruction of landfill sites for reuse, reclamation of unsanitary landfill and residential land development of waste dumping sites. The current status and screening process and analytical characteristics of the excavated materials containing waste were reviewed. Through the analysis of the samples such as separated combustibles, recyclable soils and residues collected from the on-site visits we were able to understand the characteristics of separated materials and excavated materials containing waste such as calorific value, elementary composition, TOC, foreign material content and LOI. It has been found that elimination of the moisture of excavations, removal of attached soil from the surfaces of the excavated combustibles and the quantitative supply method of the input devices are the main operating factors as essential factors for the optimal separation of excavated materials containing waste. For efficient management and recycling of excavated materials containing, it is necessary to set criteria of ash content in separated combustibles and criteria organic matter content in separated soils.

Monitoring of non-point Pollutant Sources: Management Status and Load Change of Composting in a Rural Area based on UAV (UAV를 활용한 농촌지역 비점오염원 야적퇴비 관리상태 및 적재량 변화 모니터링)

  • PARK, Geon-Ung;PARK, Kyung-Hun;MOON, Byung-Hyun;SONG, Bong-Geun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.2
    • /
    • pp.1-14
    • /
    • 2019
  • In rural areas, composting is a source of non-point pollutants. However, as the quantitative distribution and loading have not been estimated, it is difficult to determine the effect of composting on stream water quality. In this study, composting datum acquired by unmanned aerial vehicle(UAV) was verified by using terrestrial LiDAR, and the management status and load change of the composting was investigated by UAV with manual control flight, thereby obtaining the basic data to determine the effect on the water system. As a result of the comparative accuracy assessment based on terrestrial LiDAR, the difference in the digital surface model(DSM) was within 0.21m and the accuracy of the volume was 93.24%. We expect that the accuracy is sufficient to calculate and utilize the composting load acquired by UAV. Thus, the management status of composting can be investigated by UAV. As the total load change of composting were determined to be $1,172.16m^3$, $1,461.66m^3$, and $1,350.53m^3$, respectively, the load change of composting could be confirmed. We expect that the results of this study can contribute to efficient management of non-point source pollution by UAV.

Solar ESS Peak-cut Simulation Model for Customer (수용가 대응용 태양광 ESS 피크컷(Peak-cut) 시뮬레이션 모델)

  • Park, Seong-Hyeon;Lee, Gi-Hyun;Chung, Myoung-Sug;Chae, U-ri;Lee, Joo-Yeuon
    • Journal of Digital Convergence
    • /
    • v.17 no.7
    • /
    • pp.131-138
    • /
    • 2019
  • The world's electricity production ratio is 40% for coal, 20% for natural gas, 16% for hydroelectric power, 15% for nuclear power and 6% for petroleum. Fossil fuels also cause serious problems in terms of price and supply because of the high concentration of resources on the earth. Solar energy is attracting attention as a next-generation eco-friendly energy that will replace fossil fuels with these problems. In this study, we test the charge-operation plan and the discharge operation plan for peak-cut operation by applying the maximum power demand reduction simulation. To do this, we selected the electricity usage from November to February, which has the largest amount of power usage, and applied charge / discharge logic. Simulation results show that the contract power decreases as the peak demand power after the ESS Peak-cut service is reduced to 50% of the peak-target power. As a result, the contract power reduction can reduce the basic power value of the customer and not only the economic superiority can be expected, but also contribute to the improvement of the electric quality and stabilization of the power supply system.

A Study on Environmental Impact Assessment Guidelines for Marine Environmentsin Construction Projects of Offshore Waste Disposal Landfills (해상최종처리장 건설사업의 해양환경 환경영향평가 가이드라인 개발 연구)

  • Lee, Haemi;Son, Minho;Kang, Taesoon;Maeng, Junho
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.3
    • /
    • pp.312-331
    • /
    • 2019
  • An offshore waste disposal facility refers to a landfill site for final landfilling of stabilized inorganic solid waste such as land and marine waste incineration materials, and the aim of such a facility is to solve the problem of insufficient waste disposal space on land and create and develop environmentally friendly marine spaces. The purpose of this study is to prepare guidelines for the construction of offshore waste disposal facilities, which reflect the need and importance of paying sufficient heed to environmental considerations from the initial stage of the project, in order to investigate, predict, and assess how such guidelines will affect the marine environment in relation to the construction of offshore waste disposal facilities, with the goal of minimizing the impact on and damage to the environment. For the purpose of this research, guidelines focusing on the construction of offshore waste disposal facilities were derived through an analysis of domestic cases and similar foreign cases and an assessment of their level of compliance with existing EIA guidelines through the operation of a discussion forum. In order to review the EIA report on similar cases in Korea, 17 EIA documents (2005~2016) for dredged soil dumping areas and ash ponds of thermal power plants were analyzed to investigate the status of marine organisms, marine physics, marine water quality, and marine sediment and to understand what types of problems can occur and what improvement measures can be taken. The purpose of these guidelines were to minimize damage to the marine environment by promoting EIA protocols in accordance with scientific and systematic procedures, to reduce the consultation period related to projects, to resolve social conflicts, and to reduce economic costs.

A Study of Future Residential Land Use Change considering Climate Change using Land Use Equilibrium Model in Jeju (토지이용균형 모델을 이용한 기후변화에 따른 주거용 토지이용변화 - 제주 지역을 대상으로 -)

  • Yoo, Somin;Lee, Woo-Kyun;Yamagata, Yoshiki;Kim, Jiyoung;Kim, Moon-Il;Lim, Chul-Hee
    • Journal of Climate Change Research
    • /
    • v.6 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • Climate change lead to environmental pollution caused by the radical economic growth and development of industry. The amount of damage from abnormal climate is increasing rapidly for this reason in Korea. In particular, the cities is a lot of carbon emission quantity from the radical growth. Thus the government present "low carbon green growth" for eco-friendly city planning. As one of the important factors effecting climate change, active researches on land use change is performed. In this study, we knew land use change of each scenarios using land use equilibrium model which is kind of predictive model of land use in Japan. First, we selected study area to Jeju lsland. For this study, indicators for input data were selected and spatial data for input data were established using GIS program. Second, we established future scenarios based in 2040s. There are 2 future scenarios: dispersion scenario, compact scenario. Third, we compared with residential area of current and residential area for future scenarios. Results showed that residential area of the difference between current and dispersion scenario were 1,230 ha and residential area of the difference between current and compact scenario were 1,515 ha. Finally, for comparing carbon dioxide absorption volume between dispersion scenarios and compact scenarios, we calculated carbon dioxide absorption volume according to residential area decreased of each future scenarios. Results showed that carbon dioxide absorption volume in dispersion scenario was 477,878 ton and carbon dioxide absorption volume in compact scenario was 588,606 ton. Therefore, the study showed that land use equilibrium model is expected to put to use for future enhancement in creating data for climate change stabilization. And it is also expected to be utilized for city planning research in Korea.

Design and operating parameters of multi-functional floating island determined by basic experiments of unit processes (단위공정별 기초실험을 통한 다기능 융복합부도의 설계·운전인자 도출)

  • Lim, Hyun-Man;Jang, Yeo-Ju;Jung, Jin-Hong;Yoon, Young-Han;Park, Jae-Roh;Kim, Weon-Jae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.6
    • /
    • pp.487-497
    • /
    • 2018
  • Water quality improvement processes for stagnant area consist mainly of technologies applying vegetation and artificial water circulation, and these existing technologies have some limits to handle pollution loads effectively. To improve the purification efficiency, eco-friendly technologies should be developed that can reinforce self-purification functions. In this study, a multi-functional floating island combined with physical chemical biological functions ((1) flotation and oxidization using microbubbles, (2) vegetation purification and (3) bio-filtration with improved adsorption capacity) has been developed and basic experiments were performed to determine the optimal combination conditions for each unit process. It has been shown that it is desirable to operate the microbubble unit process under conditions greater than $3.5kgf/cm^2$. In vegetation purification unit process, Yellow Iris (Iris pseudacorus) was suggested to be suitable considering water quality, landscape improvement and maintenance. When granular red-mud was applied to the bio-filtration unit process, it was found that T-P removal efficiency was good and its value was also stable for various linear velocity conditions. The appropriate thickness of filter media was suggested between 30 and 45 cm. In this study, the optimal design and operating parameters of the multi-functional floating island have been presented based on the results of the basic experiments of each unit process.

Selection of Entomopathogenic Fungus Isaria javanica FT333 for Dual Control of Thrips and Anthracnose (총채벌레 및 고추탄저병의 동시 방제를 위한 곤충병원성 곰팡이 Isaria javanica FT333 선발)

  • Lee, Moran;Jeong, Hyeju;Kim, Jaeyoon;Kim, Dayeon;Ahn, Seung Ho;Lee, SangYeob;Han, Ji Hee
    • The Korean Journal of Mycology
    • /
    • v.46 no.4
    • /
    • pp.479-490
    • /
    • 2018
  • Red pepper is seriously damaged by thrips (Thrips palmi) and anthracnose caused by Colletotrichum acutatum throughout its development. Because of biotic constraints, producers often depend on chemicals that are expensive and have adverse effects on the environment, operator, and beneficial insects. In addition, resistance is developed because of the repeated use of chemicals. In recent decades, the use of microorganisms in crop protection has become a credible alternative because it is eco-friendly. In this study, we aimed to select isolates with insecticidal and fungicidal activities against the pathogens that cause anthracnose and thrips. We treated T. palmi adults and juveniles with 13 strains of entomopathogenic fungi (isolated from the soil by using the insect-bait method), and 6 strains showed excellent insecticidal activity (70-100%) 5 days after the treatment. The selected isolates were cultured with C. acutatum to screen for the strain with excellent anti-fungal activities, among which an isolate FT333 showed more than 95% control efficacy against C. acutatum in vitro. The isolate was identified as Isaria javanica through its morphological characteristics and phylogenetic analysis of the ITS and ${\beta}-tubulin$ nucleotide sequences. The Isaria javanica FT333 isolate could be used effectively for dual bio-control of thrips and anthracnose during red pepper cultivation.

Application of Antimicrobial Peptides against Microcystis aeruginosa to Control Harmful Algal Blooms (항균 펩타이드를 이용한 녹조현상 원인종 Microcystis aeruginosa의 제어)

  • Han, Sang-Il;Park, Yoonkyung;Choi, Yoon-E
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.4
    • /
    • pp.601-609
    • /
    • 2018
  • Microcystis aeruginosa, a freshwater cyanobacteria species known to be one of the most predominant species responsible for cyanobacterial harmful algal blooms (CyanoHABs). It has been frequently associated with the contamination of neurotoxins and peptide hepatotoxins, such as microcystin and lipopolysaccharides-LPSs. CyanoHABs control technologies so far put in place do not provide a fundamental solution and cause secondary pollution linked with the control measures. For this study, algicidal peptides, which have been reported to be non-toxic and to have antimicrobial properties, were employed for the development of novel eco-friendly control against CyanoHABs. The four peptides (CMA1, CMA2, HPA3P, and HPA3NT3) selected in this study showed significant algicidal effects against M. aeruginosa cells inducing cell aggregation and flotation. Moreover, the newly generated peptides (K160242-5) with certain modifications also displayed high algicidal activity. The algicidal activity of the peptides was found to depend on the concentrations and structures of each of amino acid. The results of this study suggested a novel possibility of CyanoHABs control using the non-toxic algicidal peptides.

The Effects of Soybean Cultivation on Soil Microorganism Activity (콩 재배가 토양 미생물 군집 활성도에 미치는 영향)

  • Bak, Gyeryeong;Lee, Gyejun;Kim, Taeyoung
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.2
    • /
    • pp.76-82
    • /
    • 2019
  • BACKGROUND: For sustainable agriculture, there are various agricultural practices including low input. Over the last few decades high input of chemical fertilizer and compounds results in environmental pollution and deterioration of soil fertility. Soybean (Glycine max L.) is well known eco-friendly crop due to their symbionts. Soybean has a relationship with nitrogen fixation bacteria called rhizobia. In this research work, we investigated effects of soybean cultivation on soil microorganism activities. METHODS AND RESULTS: Experiments were conducted in pots and potato cultivation was used as reference. Soil chemical properties were analyzed considering soil nutrient over cropping period. For the soil microbial community analysis, dehydrogenase activity analysis (DHA) analyzed along with denaturing gradient gel electrophoresis. The results showed that higher soil organic matter in the soybean cultivation soil than in the potato cultivation soil. Available $P_2O_5$ concentration increased gradually in both pots but showed higher value in the potato cultivation soil. DHA value implying microbial activities showed higher value in the soybean cultivation soil over all cropping period. CONCLUSION: The cause of high microbial activity in the soybean cultivation soil was considered to the effects of some specific microorganisms related to soybean cultivation. Therefore, the availability of soybean cultivation for sustainable agriculture should be encouraged in terms of microorganism community activity in soil.