• Title/Summary/Keyword: eccentricity length

Search Result 74, Processing Time 0.021 seconds

LED Output Light Characteristic by Lens Eccentricity (LED Lens 의 이심률에 따른 출광 특성)

  • Kim, Young-Chul;Lyu, Jong-Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.11
    • /
    • pp.1170-1173
    • /
    • 2012
  • We have investigated the LED lens eccentricity effect on light intensity distribution. For the purpose, we introduced an equation of focal length for paraboloid, and then made a comparative analysis of the theoretical result and 3-D simulation result.

Influence of Thermal Expansion on Eccentricity and Critical Speed in Dry Submersible Induction Motors

  • Lv, Qiang;Bao, Xiaohua;He, Yigang
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.106-113
    • /
    • 2014
  • Rotor eccentricity is one of the major factors that directly influence the security of horizontal electrical machines, and the critical speed of the shaft has a close relationship with vibration. This paper deals with the influence of thermal expansion on the rotor eccentricity and critical speed in large dry submersible motors. The dynamic eccentricity (where the rotor is still turning around the stator bore centre but not its own centre) and critical speed of a three-phase squirrel-cage submersible induction motor are calculated via hybrid analytical/finite element method. Then the influence of thermal expansion is investigated by simulation. It is predicted from the study that the thermal expansion of the rotor and stator gives rise to a significant air-gap length decrement and an inconspicuous slower critical speed. The results show that the thermal expansion should be considered as an impact factor when designing the air gap length.

Predicting the seismic behavior of torsionally-unbalanced RC building using resistance eccentricity

  • Abegaz, Ruth A.;Kim, In-Ho;Lee, Han Seon
    • Structural Engineering and Mechanics
    • /
    • v.83 no.1
    • /
    • pp.1-17
    • /
    • 2022
  • The static design approach in the current code implies that the inherent torsional moment represents the state of zero inertial torsional moments at the center of mass (CM). However, both experimental and analytical results prove the existence of a large amount of the inertial torsional moment at the CM. Also, the definition of eccentricity by engineers, which is referred to as the resistance eccentricity, is defined as the distance between the center of mass and the center of resistance, which is conceptually different from the static eccentricity in the current codes, defined as the arm length about the center of rotation. The difference in the definitions of eccentricity should be made clear to avoid confusion about the torsion design. This study proposed prediction equations as a function of resistance eccentricity based on a resistance eccentricity model with advantages of (1) the recognition of the existence of torsional moment at the CM, (2) the avoidance of the confusion by using resistance eccentricity instead of the design eccentricity, and (3) a clear relationship of applied inertial forces at the CM and resisting forces. These predictions are compared with the seismic responses obtained from time-history analyses of a five-story building structure under moderate and severe earthquakes. Then, the trend of the resistance eccentricity corresponding to the maximum edge drift is investigated for elastic and inelastic responses. The comparison given in this study shows that these prediction equations can serve as a useful reference for the prediction in both the elastic and the inelastic ranges.

The Response Modification Factor of Inverted V-type Braced Steel Frames (역V형 가새골조의 반응수정계수)

  • Ahn, Hyung Joon;Jin, Song Mei
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • In this study of Eccentric Braced Frames have identified the following target eccentricity on the length of the inelastic behavior of the reaction by calculating the correction factor by comparing it to the value suggested by the earthquake provided material for the rational design aims to There are. As a variable-length V-braced frame analysis model stations were set up. Eccentricity faults in the model according to the length stiffness ratio, the maximum amount of energy dissipation were analyzed base shear and multi-layered model of the reaction from the eccentricity correction factor calculated on the length of the building standards proposed by KBC 2009 in response eccentricity correction factor calculated from The length varies. does not have the same response modification factor was confirmed.

A study on the development of the velocity and temperature fields in a laminar flow through an eccentric annular ducts (偏心된 二重圓管의 環狀部를 지니는 層流流動에서의 連度場 및 溫度場의 確立에 대한 硏究)

  • 이택식;이상산
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.861-869
    • /
    • 1986
  • A numerical study has been conducted on the development of the velocity and temperature fields in a laminar flow through an eccentric annular duct. A bipolar coordinates system is adopted, and a numerical program is developed to analyze 3-dimensional parabolic flow problems. In the analysis of the velocity field, the entrance length has been defined as the distance where the axial pressure gradient is greater than that of the developed velocity field by 5%. The dimensionless hydrodynamic entry length increases with increasing eccentricity. In the transverse flow fields, the reverse flow region along the wall due to the developing axial velocity near the entrance of the duct is found. In the analysis of the temperature field, the thermal entry length has been defined as the axial distance where the mean fluid temperature is 5% less than that of the developed temperature field. The dimensionless thermal entry length increases as eccentricity or Prandtl number increases. The overshoot of the mean Nusselt number over the developed value at the zero-temperature wall is encountered, and the rate of the overshoot increases with the increase of the eccentricity and Prandtl number.

Numerical investigation of The characteristics of Biaxial Flexure Specimens (수치해석을 이용한 이방향 휨인장 시험체의 특성분석)

  • Kim, Ji-Hwan;Zi, Goang-Seup;Kang, Jin-Gu;Oh, Hong-Seob
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.614-617
    • /
    • 2008
  • This paper presents the numerical investigation of the characteristics of biaxial flexure specimens for the Biaxial Flexure Test(BFT) which was recently developed to measure the biaxial tensile strength of concrete. Using FEM, the effect of size and eccentricity on the specimens was evaluated. The parameters such as radious of the support and the loadings, thickness and free length were studied. The results of the FE analysis were entirely consistent with the predictive solution, when b/agt;0.4, h/alt;0.6 and the thickness of the specimens were increased. On the other hands, when b/agt;0.4, those with lesser free length showed good results. To limit the difference between the stresses at the end points of 2b as the specimen was sustained and the stress at the center point of the specimen are not over 10%, lateral eccentricity was analyzed to be in the limits of 3%.

  • PDF

Analysis of the Curving Phenomenon of Curved Circular Shaped Product by the Upper Bound Analysis and the DEFORMTM-3D in Eccentric Extrusion (곡봉(曲奉)의 편심압출가공에 대하여 상계굽힘해석과 DEFORMTM-3D에 의한 굽힘해 석 비교)

  • 김진훈;김한봉;진인태
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.45-48
    • /
    • 1997
  • The kinematically admissible velocity field is developed for the eccentric extrusion of circular shaped products. The curving of product in extrusion is caused by the difference of the linearly distributed longitudinal velocity on the cross-section of the workpiece at the dies exit. The results of the eccentric extrusion by upper bound analysis show that the curvature of product increases with the increase in eccentricity of gravity center of the cross-section of workpiece at dies entrance from that of the corss-section at the dies exit end. By the DEFORMTM-3D analysis, the curving of circular shaped product in extrusion is changed by the eccentricity, die land length and the die length. The result of the analysis by DEFORMTM-3D software shows that the curvature of circular shaped product increases with the eccentricity. The two analysis and one experiment show the curving phenomenon in eccentric extrusion process.

  • PDF

An Analysis of the Twisting and Bending Extrusion Process of the Product with the Rectangular Section by the $ DEFORM^{TM}$-3D (사각단면을 가진 압출제품의 비틀림굽힘 압출가공법에 대한$ DEFORM^{TM}$-3D 해석)

  • 윤선홍
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.115-118
    • /
    • 1999
  • The twisting and bending extrusion process is developed by the $DEFORM^TM$-3D. Because the rectangular section of the extruded product has the symmetry line of cross-section area, the twisting and the bending of extruded product has not occurred. The product with the rectangular section is applied to the twisting and bending extrusion process through the twisted die surface and eccentricity die section. It is shown that the twisting of extruded product is caused by the twisted die surfaces and the bending of extruded product is causd by the eccentricity between the die section. The results by the analysis show that the twisting angle and the curvature of extruded products increases by the die twisting angle, the eccentricity, but decreases by the die length, and friction condition

  • PDF

Size Effect on Axial Compressive Strength of Concrete (콘크리트의 축압축강도에 대한 크기효과)

  • 이성태;김민욱;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.153-160
    • /
    • 2001
  • In this study, the size effect on axial compressive strength for concrete members was experimentally investigated. Experiment of mode I failure, which is one of the two representative compressive failure modes, was carried out by using double cantilever beam specimens. By varying the eccentricity of applied loads with respect to the axis on each cantilever and the initial crack length, the size effect of axial compressive strength of concrete was investigated, and new parameters for the modified size effect law (MSEL) were suggested using least square method (LSM). The test results show that size effect appears for axial compressive strength of cracked specimens. For the eccentricity of loads, the influence of tensile and compressive stress at the crack tip are significant and so that the size effect is present. In other words, if the influence of tensile stress at the crack tip grows up, the size effect of concrete increases. And the effect of initial crack length on axial compressive strength is present, however, the differences with crack length are not apparent because the size of fracture process zone (FPZ) of all specimens in the high-strength concrete is similar regardless of differences of specimen slenderness.

Bearing capacity of shallow footing under combined loading

  • Kusakabe, Osamu;Takeyama, Tomohide
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.3-25
    • /
    • 2010
  • The paper deals with two bearing capacity problems of shallow footing under combined loading. The first is a FEM study of shallow strip footing on two-layer clay deposits subjected to a vertical, horizontal and moment combined loading, while the second is a centrifuge study of shallow rectangular footing on dry sand under double eccentricity. The FEM results revealed that the existence of top soft layer sensitively affects more on horizontal and moment capacity than vertical capacity for cases of footing on soft clay overlying stiff clay. Practical design charts are presented to evaluate bearing capacities of footing for various combinations of the ratio of the depth of the upper layer to the footing width and the ratio of undrained strength of the upper layer to that of the lower. The centrifuge tests indicated that current design practice of calculating failure load of rectangular surface footing under double eccentricity underestimates the centrifuge loading test data. This trend is more marked when the eccentricity becomes larger. The decreasing trend in failure load with an increase of double eccentricity is rather uniquely expressed by a single curve, using a newly defined resultant eccentricity and the diagonal length of the footing base.

  • PDF