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SYNOPSIS: The paper deals with two bearing capacity problems of shallow footing under combined loading. The 
first is a FEM study of shallow strip footing on two-layer clay deposits subjected to a vertical, horizontal and moment 
combined loading, while the second is a centrifuge study of shallow rectangular footing on dry sand under double 
eccentricity. The FEM results revealed that the existence of top soft layer sensitively affects more on horizontal and 
moment capacity than vertical capacity for cases of footing on soft clay overlying stiff clay. Practical design charts are 
presented to evaluate bearing capacities of footing for various combinations of the ratio of the depth of the upper layer 
to the footing width and the ratio of undrained strength of the upper layer to that of the lower. The centrifuge tests 
indicated that current design practice of calculating failure load of rectangular surface footing under double eccentricity 
underestimates the centrifuge loading test data. This trend is more marked when the eccentricity becomes larger. The 
decreasing trend in failure load with an increase of double eccentricity is rather uniquely expressed by a single curve, 
using a newly defined resultant eccentricity and the diagonal length of the footing base. 
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1. Introduction 
 

Over the last two decades, the issue of bearing capacity of shallow footing has been studied with respect to combined 
loading framework both from the viewpoints of physical and numerical modeling based on macro-element concept (e.g. 
Tan, 1990, Nova and Montransio, 1991, Butterfield and Gottardi, 1994). This paper deals with two bearing capacity 
problems of shallow footing under combined loading. 

The first problem is a FEM study of bearing capacity of shallow strip footing on two layered clays under combined 
loading. The problem has a long history of research, starting from a classical solution for vertical bearing capacity of 
strip footing by limit equilibrium analysis, using circular slip surface by Button (1953). He adopted two parameters to 
describe the problem; the ratio of undrained shear strength in the bottom clay layer (cb) to that of the top layer (ct), and 
the ratio of depth measured from the base of footing to the interface of the two layers (D) to a half of footing width 
(B/2) and provided design charts in terms of bearing capacity factor, Nc, for two cases: (a) stiff clay overlying soft clay 
and (b) soft clay overlying stiff clay. Reddy and Srinivasan (1967) extended this analysis to anisotropic clays with a 
linear variation of shear strength with depth. Brown and Meyerhof (1969) criticized the use of circular slip surface 
based on a number of laboratory loading tests using strip and circular footings on various combinations of two layered 
clays, and provided charts for modified bearing capacity factors in terms of undrained shear strength ratio, cb/ct, and 
depth of top layer/footing width ratio, D/B. Chen (1975) also analyzed the Button’s problem from the context of limit 
analysis using a rotational mechanism. Nakase et al.(1987) conducted a series of centrifuge tests on normally 
consolidated clay layer with a surface crust layer with upper bound analyses. Merifield et al.(1999) applied numerical 
limit analysis to evaluate the undrained bearing capacity of a rigid surface strip footing resting on a two-layer clay 
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deposit. Michalowski (2002) presented upper bound solutions to limit loads on strip footing over two-layer clay 
foundation soil, considering two failure mechanisms: one with a continually deforming field and the other with a multi-
block mechanism. He then found that the multi-block mechanism yields the least upper bound. The method was also 
used for calculations of bearing capacity of strip footings subjected to loads with horizontal components. Wang and 
Carter (2002) conducted large deformation 2D FE analyses with the Arbitrary Lagrangian-Eulerain method on deep 
penetration behaviour of strip and circular footings overlying two different undrained clay layers, where the upper layer 
was always stronger than the lower layer. They reported that the movement of soil from beneath the footing 
significantly affects the bearing response. Zhu & Michalowski (2005) performed three dimensional finite element 
analyses for bearing capacity of rectangular footings on two-layer clay. More recently Kim et al. (2008) reported 1 g 
model test, looking into the problem of bearing capacity evaluation in the early stage of ground improvement in marine 
clay dredged deposits. They concluded that Brown & Meyerhof equation underestimated and Button equation 
overestimated the experimental results.  

It has been known that there is a surface in load space that defines a failure envelop for the footing, which can be 
written in the form of f(V/suA, H/suA, M/suAB)=0, where V, H and M are vertical load, horizontal load and moment, 
respectively, and A the plan area of the footing, B the width of the footing and su the undrained shear strength of the soil 
beneath the base of the footing. The common sign conventions for loads and moments used are based on the right-
handed axes and clockwise positive conventions, as is shown in Figure 1.  
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Figure 1. The common sign conventions for loads and moments 

 
Bransby and Randolph (1998) conducted two dimensional finite element analyses, assuming that the clay obeys an 

elastic-plastic Tresca material with undrained shear strength linearly increasing with depth. The footing was assumed to 
adhere fully to the soil, which enables to develop compressive, tensile and shear stresses at the interface between the 
footing and the soil. Based on soil displacement fields by FEM, they developed upper bound mechanisms; wedge, 
scoop and combinations of them. They found that the shape of the failure envelop was found to be similar to that 
predicted by previous workers in V-M and V-H space but differed significantly in M-H space. That is, the failure 
envelop in M-H space is not symmetric, depending on the sign conventions of M and H. The combination of positive 
moment and negative horizontal load develops a simple scoop failure, whereas the combination of positive moment and 
positive horizontal load generates the wedge-scoop-wedge mechanism, resulting in the soil outside the footing base 
being pulled up sideways due to the adhesion between the footing base and the soil, associated with further mobilization 
of shear strength of the soil outside the footing base. Taiebat and Carter (2000) carried out three-dimensional finite-
element analyses of circular footing on the surface of homogeneous, purely cohesive soil, under the similar assumption 
as those of Bransby and Randolph (1998). A three-dimensional failure locus was presented, and an equation that 
approximates the shape of the failure locus was also suggested as 
 

2 3

1 1 0
u u u u
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= + − + − =⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦
 (1) 

 
where α is a factor that depends on the soil profile, and Vu, Mu and Hu represents the capacity of the footing under pure 
vertical load, pure moment and pure horizontal load, respectively. They concluded that overall the approximation is 
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satisfactory, and the equation gives conservative and sufficient results for many practical applications. These studies are 
related to either a single clay layer of uniform strength or normally consolidated. 

The second problem is a centrifuge study of shallow rectangular footing on dry sand under double eccentricity. A 
typical combined loading situation encountered in practical design is eccentric loading. The concept of effective width 
for a strip footing proposed by Meyerhof (1953) has been commonly used in the analysis of foundations subjected to 
eccentric loading (Poulos et al., 2001). The concept of effective width can be stated that the bearing capacity of a strip 
footing with a width of B subjected to an eccentrically applied vertical loading with the eccentricity of e is assumed to 
be equivalent to the bearing capacity of another strip footing with a fictitious effective width B’ (where B’ = B - 2e) on 
which the vertical load is centrally applied. For the case of strip footing on sand, this effective width concept can be 
expressed in terms of failure envelope in vertical load (V) - moment (M) space as M/B = 0.5V{1 - (V/Vu)0.5}, where Vu 
is the failure vertical load under pure vertical loading, and V the vertical failure load with eccentricity. 

Meyerhof (1953) extended the effective width concept to the effective area concept for a rectangular footing of length 
L and width B with double eccentricity, eL and eB on the major axes by finding the minimum effective contact area with 
a straight boundary across the footing base such that its centroid coincides with that of the load. The effective contact 
areas are, thus, assumed either a trapezoidal or triangular shape under double eccentricity. 

Some current design specifications (e.g. Japan Road Association, 2002) conveniently modify the original Meyerhof’s 
effective area in such a way that the contact area remains a rectangular shape with the effective length L’ (= L - 2eL) and 
the effective width B’ (= B - 2eB), as shown in Figure 2. The effective width concept has been well supported by various 
experimental results, mainly for single eccentricity, both under gravitational and centrifugal acceleration fields as a 
conservative hypothesis (e.g. Terashi et al., 1984; Okamura et al., 2002; Musso and Ferlisi, 2009). Thus it seems that 
there exist no practical questions regarding the evaluation of ultimate bearing capacity as far as strip footing with single 
eccentricity is concerned. It has been reported, however, that two types of failure mode have been observed: failure 
occurs either (A): on the side of the eccentricity of the load or (B): on the opposite side of the eccentricity of the load as 
is illustrated in Figure 3. 
 

B
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L  
Figure 2. Illustration of effective area concept with length L’(=L-2eL) and width B’(=B-2eB) 

 

Type A failure mode
(Meyerhof, 1953; Eastwood, 1955;
Purkayastha and Char, 1977)

Type B failure mode
(Jumikis, 1956; Kitazume, 1984)  

Figure 3. Two types of failure mode (Kitazume, 1984) 
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Kitazume (1984) suggested that the restriction of horizontal footing movement may be a possible reason for the 
occurrence of the two types of failure mode by conducting centrifuge tests and FEM analyses. Kitazume and Ikeda 
(1993) performed two further types of loading tests in a centrifuge, one with a horizontal restriction and the other 
without restriction by monitoring the horizontal force generated at the footing base during loading. They observed that 
the footing tends to horizontally displace towards the side of eccentricity as well as vertically settle when the horizontal 
force is kept zero. When the horizontal movement is restricted, the horizontal force towards the center of the footing is 
generated at the base of footing to compensate the restriction and the ultimate bearing capacity reduction is about 10 % 
larger than that of without restriction. Hence the failure mode was considerably affected by the horizontal restriction. 
When the horizontal movement is restricted, the failure surface predominantly occurs on the opposite side of the 
eccentricity. When the footing is free to move horizontally, the failure surface develops towards the side of the 
eccentricity with a smaller failure surface on the opposite side.  

Compared with a number of experimental studies, studies of theoretical verification for the effective width concept 
are limited. As far as the authors are aware of, only work by Narita and Yamaguchi (1988) analytically derived 
Meyerhof’s concept of effective width for strip footing, assuming that the failure surface is expressed by a single 
logarithmic spiral. 

The literature review reveals that very limited information regarding double eccentricity is available, which is 
essentially three dimensional in nature. 
 
2. FEM study of  shallow strip footing on two-layer clay under combined 

loading 
 

Figure 4 shows a typical finite-element mesh in the plane strain condition. The ground was assumed to be a level 
ground with two horizontally layered cohesive deposits. The footing width (B) was taken to be 160mm, and the area of 
analysis was about 9B in width and 2.5B in depth, to minimize possible boundary effects. At the boundaries, the vertical 
and horizontal displacements at the bottom boundary were fixed, as were the horizontal displacements at the side 
boundaries. The footing base was assumed to be adhering fully to the soil. 
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Figure 4. Typical FE mesh used 

 
The element used was a 15-node triangle. The element stiffness matrix was evaluated by numerical integration using 

a total of 12 Gauss points. There were 684 elements, 5657 nodes and 8208 Gauss points in the mesh shown in Figure 4. 
The program used was a commercially available two-dimensional FEM program, Plaxis version 8(reference).  

Since undrained bearing failure was considered in this study, the soil was assumed to be an elastic perfectly plastic 
material, obeying Tresca failure criterion. Two groups of layered ground were studied: (a) stiff clay overlying soft clay 
and (b) soft clay overlying stiff clay. The undrained shear strength of stiff clay was assumed to be a fixed value of 80 
kN/m2 and the undrained shear strength of soft clay varied from 20 to 60 kN/m2, covering the values of cb/ct ratio from 
0.25 to 0.75 for the cases of stiff clay overlying soft clay, and from 1.33 to 4.0 for the cases of soft clay overlying stiff 
clay. The effect of two layered ground is expressed by the D/B ratio. The value of D/B varies from 0 to 2.0. In total, 30 
cases were calculated. The values of other geotechnical parameters used for the FEM analysis are listed in Table 1.  
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Table 1. Input parameters 
Undrained shear strength Unit 

weight 
Young’s 
modulus for stiff clay for soft clay 

Poisson’s 
ratio 

γ(kN/m3) E(kN/m2) (kN/m2) (kN/m2) ν 
16 50,000 80 20, 40, 60 0.495 

 
2.1 Key results and discussion 
 
2.1.1 Bearing capacity of  footing on stiff  clay overlying soft clay: cb/ct < 1 
 

Figure 5 plots the value of H/suA against V/suA at failure for various values of D/B in the range from 0 to 2 for the 
case of cb/ct=0.25, where su is equal to the undrained shear strength of the top clay layer, ct, and A is the bottom plan of 
the footing (A=B*1). The case of D/B=0 corresponds to the single clay layer with the undrained shear strength of the 
bottom layer, cb. V/suA can be regarded as bearing capacity factor, Nc. The value of V/suA at the horizontal axis (under 
pure vertical loading) is 5.35 for D/B=2.0 and 1.34 for D/B=0, four times difference between the two, as was expected 
from the condition of cb/ct=0.25. The value of H/suA at the vertical axis (under pure horizontal loading) is 1.1 for 
D/B=2.0 and 0.3 for D/B=0, once again four times difference. Hereafter the value of V at the horizontal axis and the 
value of H at the vertical axis are denoted as Vu and Hu, respectively for a given D/B value. 
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Figure 5. Failure Envelopes in H-V Space (cb/ct=0.25) 

 
Although the bearing capacity factor Nc obtained is about 4% larger than the plastic solution of (2 + π), it is 

considered that the present study provides the consistent results and normalized values of V/Vu and H/Hu gives 
meaningful practical information. 

Under the combined loading conditions, any horizontal load results in a drop of vertical resistance with an abrupt 
drop in vertical resistance, when the angle of loading inclination, defined by tan-1(H/V) becomes around 20° for the case 
of D/B=0 and 2.0. This result is very much consistent with the value of 21° for a single clay layer theoretically derived 
by Bolton (1979).  Vertical bearing capacity (Vu) is sensitively influenced by existence of the bottom soft clay layer, 
resulting in significant decrease when D/B decreases. In contrast, the horizontal bearing capacity (Hu) remains 
unaffected until D/B value becomes smaller than 0.25. It is seen that the values for D/B=1.0, 0.5 and 0.25 are identical 
to those of D/B=2.0 until the angle of loading inclination becomes around 22.7°, 27.6°, 46.3°, respectively. 

The change of bearing capacity is always associated with the change in failure mode. Figure 6 shows three 
displacement fields with different angles of loading inclination. As the angel of loading inclination increases, the failure 
mode changes from classical indentation mode to the wedge mode and finally to the slip mode where the slip surface is 
formed just beneath the footing.  

7



 

 
(a) Pure vertical loading (scale factor = 5) 

 
(b) Loading inclination: tan-1(V/H) = 46.3° (scale factor = 20) 

 
(c) Pure horizontal loading (scale factor = 20 ) 
Figure 6. Failure mode (D/B=0.25, cb/ct=0.25) 

 
The normalized form of failure envelop, H/Hu-V/Vu space, is presented in Figure 7. The normalized failure envelops 

for D/B=2.0 and 0 are identical, both of which corresponds to the problems of the single clay layer. As D/B increases 
from D/B=0, the failure envelop first shrinks and then starts expanding until D/B becomes 1.0, and it shrinks again 
towards that of single clay layer. 
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Figure 7. Normalized failure envelopes in H-V space (cb/ct=0.25) 
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Figure 8 plots the value of M/suAB against V/suA at failure for various values of D/B in the range from 0 to 2 for the 
case of cb/ct=0.25. The value of M/suAB is 0.8 for D/B=2.0 and 0.2 for D/B=0, once again four times difference. Under 
the V-M combined loading conditions, any moment load results in a gradual drop of vertical resistance. It is noted that 
the values for D/B=1.0 are identical to those of D/B=2.0 until the angle defined by tan-1(M/B/V) becomes around 16.6°. 
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Figure 8. Failure envelopes in M-V space (cb/ct=0.25) 

 
Figure 9 compares the displacement fields between a combined loading with positive vertical and positive moment 

(a) and the pure positive moment loading (b). The displacement fields suggest that critical failure mode changes from 
the wedge mode to the scoop rotational mode. The depth of rotational surface extends to 80% of the footing width.  

 

  
(a) Positive vertical and positive moment loading             (b) Pure positive moment loading 

(scale factor = 2)                                  (scale factor = 1) 
Figure 9. Failure mode (D/B=0.25, cb/ct=0.25) 

 
Figure 10 plots the value of M/suAB against H/suA for various values of D/B in the range from 0 to 2 for the case of 

cb/ct=0.25. It is noted that moment capacity slightly increases with application of horizontal load for the case of single 
layer (D/B=2.0 and 0), whereas moment capacity slightly decreases with application of horizontal load for other cases. 
As will be seen later, however, the decrease in moment capacity with increasing horizontal load is observed only for the 
cases of cb/ct value being small. 
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Figure 10. Failure envelopes in M-H space (cb/ct= 0.25) 

 
Figure 11 shows the displacement field for the case of positive moment and positive horizontal loading. The failure 

mode seems to belong to the scoop rotational mode. The depth of rotational surface extends to a depth of 100% of the 
footing width which may be compared with 80% in Figure 9(b).  

 

 
Figure 11. Failure mode (D/B=0.25, cb/ct=0.25, scale factor = 0.5) 

 
In order to examine the effect of cb/ct value, Figure 12 shows the cases of cb/ct= 0.75. It is apparent by comparing 

with Figures 5, 8 and 10 that the smaller value of cb/ct significantly influences on the shape of failure surface than the 
larger value of cb/ct does.  The effect of cb/ct is more marked in M-H plane.  
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(a) H-V space 
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(b) M-V space 
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(c) M-H space 

Figure 12. Failure envelopes (cb/ct=0.75) 
 
2.1.2 Bearing capacity of  footing on soft clay overlying stiff  clay cb/ct>1 
 

Figure 13 plots the value of H/suA against V/suA for various values of D/B in the range from 0 to 2 for the case of 
cb/ct=2.0. For the case of D/B=0 (uniform undrained shear strength of cb), the vertical bearing capacity (Vu) gradually 
decreases with increasing D/B value. But the horizontal bearing capacity (Hu) suddenly drops to a half when D/B 
changes even from 0 to 0.125, indicating that the existence of thin soft layer drastically changes the horizontal bearing 
capacity. If a thin layer of soft clay exists on the top layer, the horizontal resistance (Hu) is governed by the value of ct, 
whereas the vertical bearing capacity (Vu) is less sensitive to the existence of thin soft layer. The values for D/B from 
0.125 to 2.0 are identical to those of D/B=2.0 until the angle of loading inclination, defined by tan-1(H/V) becomes 
around 18.7°. 

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4

0 1 2 3 4 5 6 7 8 9 10 11 12
V/suA

H
/s u

A

D/B=0
D/B=0.125
D/B=0.250
D/B=0.500
D/B=1.000
D/B=2.000

18.7°

 
Figure 13. Failure envelopes in H-V space (cb/ct=2.0) 

11



Normalized failure envelops for 0<D/B<2.0 are located within those of the single clay layer, as is seen in Figure 14.  
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Figure 14. Normalized failure envelopes in M-H space (cb/ct=2.0) 

 
Figure 15 plots the value of M/suAB against V/suA for various values of D/B in the range from 0 to 2 for the case of 
cb/ct=2.0. It can be seen that the failure surface gradually becomes smaller as D/B increases. Similar to V-H plane, 
normalized failure envelops for 0<D/B<2.0 are located within those of the single clay layer, as is seen in Figure 16. It 
should be noted here that there is a slight difference between the values of D/B=0.0 and 2.0. Figure 17 plots the value of 
M/suAB against H/suA for various values of D/B in the range from 0 to 2.0 for the case of cb/ct 

=2.0. In this series of 
analysis, the combined loading with positive moment and negative horizontal load was also considered. It is noted that 
the shape of interaction diagram of positive moment and positive horizontal loading significantly differ from that of 
positive moment and negative moment loading. Application of negative horizontal load results in gradually drops of 
moment capacity, whereas positive horizontal loads lead to slightly increase in moment capacity. This result is 
consistent with the results (Bransby and Randolph, 1998; Taiebat and Carter, 2000). Figure 18 presents the normalized 
failure envelops. 
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Figure 15. Failure envelopes in M-V space (cb/ct=2.0) 
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Figure 16. Normalized failure envelopes in M-V space (cb/ct=2.0) 
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Figure 17. Failure surfaces in M-H space (cb/ct=2.0) 
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Figure 18. Normalized failure envelopes in M-H space (cb/ct=2.0) 

 
2.2 Evaluation of  bearing capacity 
 

As have been discussed, the thin soft clay in the top layer sensitively influences on the shape of failure surface, which 
poses a difficulty in developing a simple yet practical proposal for an equation describing failure surface.  An attempt 
was made, therefore, to develop equations only for the cases of footing on stiff clay overlying soft clay. Taiebat and 
Carter (2000) proposed the equation for failure surface of footing under combined loading and suggested to use α=0.3 
in Equation (1), which gives a reasonable value for single layer. As have been previously discussed, the modification is 
required to accommodate the effect of cb/ct and D/B on the failure surface in M-H plane as cb/ct<1  
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Figure 19 presents the chart for vertical bearing capacity factor. The equation for vertical bearing capacity proposed 
by Brown and Meyerhof (1969) is well supported by the present study, although the present study gives about 4% larger 
values. It is thus acceptable to adopt their bearing capacity formula for practical use. 
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Figure 19. Chart for vertical capacity factor 
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As was pointed out, the horizontal bearing capacity was highly sensitive to the strength of top clay layer. As is seen in 

Figure 20 as the chart of horizontal capacity, horizontal capacity is proportional to the strength ratio, cb/ct for the case of 
D/B=0.0 and is constant regardless of cb/ct for the cases of D/B more than 0.25. Only the situations where cb/ct being 
less than 0.75 and D/B = 0.125, need to consider nonlinearity. The following equation is proposed for practical use. 
 

/ 0.25
/ 0.25

tu

bu u

c c D BH c
c c D Bs A s A
= >⎧

= ⎨ = <⎩
 when cb/ct<1  (6) 

u t

u u

H c
s A s A

=  when cb/ct>1  (7) 
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Figure 20. Chart for horizontal capacity factor 
 

 
Figure 21 shows the chart for moment capacity factor. The following equation can fit the analytical results and is 

proposed to use for practical purpose. 
 

0.82 1 1 1 1.33 0.82u b

u t

M c D
s AB c B

⎧ ⎫⎛ ⎞⎪ ⎪⎛ ⎞= − − − ≤⎨ ⎬⎜ ⎟⎜ ⎟
⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭

 when cb/ct<1  (8) 

0.82 1 1 1 3.5 0.82u b

u t

M c D
s AB c B

⎧ ⎫⎛ ⎞⎪ ⎪⎛ ⎞= + − − ≥⎨ ⎬⎜ ⎟⎜ ⎟
⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭

 when cb/ct>1 (9) 
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Figure 21. Chart for moment capacity factor 

 
3. Centrifuge study of  shallow rectangular footing on dry sand under 

double eccentricity 
 

A series of centrifuge tests were conducted using the Mark III centrifuge of the Tokyo Institute of Technology. Model 
grounds were prepared in a circular steel container of dimensions 586 mm diameter and 400 mm deep. Air dry Toyoura 
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sand was used to make the model ground 200 mm deep with a target relative density of 80 % by air pluviation method. 
Table 1 summarizes the properties of Toyoura sand.     

A 691 gram mass rectangular model footing was made of duralumin and has the dimensions of H 50 mm high, B 50 
mm wide, and L 100 mm long, giving the aspect ratio (n = L/B) of 2. The footing thus is considered rigid. Sandpaper 
was glued to the base of the footing to simulate the rough footing base condition. A grid of 8 mm diameter semi-circular 
indents were made on the top surface of the footing with a spacing of 15 mm for the longer axis of footing and 10 mm 
for the shorter axis, which provide the contact points with a loading rod, of which the tip has a 7 mm diameter semi-
circular shape to create the rotational free condition. Figure 22 shows the model footing with a numbering sequence for 
the loading points. The loading system used consists of a 5 ton capacity actuator driven by a 200 W motor and a 
supporting H beam frame which is firmly bolted on the web of the circular container. Therefore the loading point is 
restricted from horizontal displacement. Vertical load was measured by a load cell of 20 kN capacity attached to the 
loading rod. Vertical settlements of the footing were measured by a potentiometer attached to the loading rod. 
Horizontal displacements of the footing were measured by two laser displacement gauges at different elevations in the 
diagonal directions; front and side of the footing, from which the complete three dimensional movement of the footing 
can be captured. The vertical movement of the ground surface was also monitored by a number of potentiometers 
located around the footing. 
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Figure 22. Model footing and loading point 

 
 
The model footing was loaded under the centrifugal acceleration of 50 g. The loading rate of 5.0 mm/min was 

selected after comparing the load settlement curve of the loading rate of 0.5 mm/min and that of 5.0 mm/min, which 
follow almost an identical load settlement curve. Figure 23 illustrates the model ground with the loading system and 
measurement arrangements. 
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Figure 23. Model ground with the loading system and measurement arrangements 
 
 
A particular emphasis was made to observe the detailed three dimensional failure surfaces after the loading test, by 

vertically dissecting the model ground at various sections to establish the failure surface. In order to do this, the top 100 
mm of the model ground layer consisted of alternative layers of 5 mm thick colored Toyoura sand layer and 5 mm thick 
original Toyoura sand layer for the three cases 15, 16 and 17. After the loading test, some amount of water was 
introduced to the model ground under the gravitational acceleration through the bottom of the container up to the top 
surface of the ground and then the water was allowed to drain out of the container to generate an apparent cohesion in 
the model ground to keep the vertical cut face stable. A series of photographs were taken at each vertical section. Figure 
24 presents the locations of the observed sections with views of typical dissected section. Together with the data of the 
vertical movement of the ground surface, three dimensional failure modes can be established. Table 2 summarizes the 
test program with test code, of which e  will be defined later. 
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Figure 24. Locations of the observed sections with a view of typical dissected section 
 
 
 
 

Table 2. Test program 
Test 

code 
Loading point eB (mm) eL (mm) ē (mm) Dr (%) Colored sand layer 

Case 1 1A 0 0 0.0 80.4 NA 
Case 2 1A 0 0 0.0 80.1 NA 
Case 3 1B 10 0 22.4 79.4 NA 
Case 4 1C 20 0 44.7 81.1 NA 
Case 5 2A 0 15 16.8 78.9 NA 
Case 6 2B 10 15 28.0 78.3 NA 
Case 7 2C 20 15 48.1 78.3 NA 
Case 8 3A 0 30 33.5 82.7 NA 
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Case 9 3B 10 30 40.2 81.4 NA 
Case 10 3C 20 30 55.9 78.3 NA 
Case 11 4A 0 45 50.3 79.2 NA 
Case 12 4B 10 45 54.8 80.5 NA 
Case 13 4C 20 45 67.1 81.3 NA 
Case 14 4C 20 45 67.1 80.1 NA 
Case 15 1C 20 0 44.7 76.1 ○ 
Case 16 4A 0 45 50.3 80.5 ○ 
Case 17 4C 20 45 67.1 82.5 ○ 

 
3.1 Key Results and discussions 
 

Figure 25 shows notations and conventions used in this paper: V is vertical load, M moment, vδ  vertical 
displacement, hδ  horizontal displacement and δθ

 
angle of rotation measured from the vertical axis.  
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Figure 25. Notations and convections 

 
In order to consider single and double eccentricity in a unified manner, a new index for eccentricity, termed resultant 
eccentricity hereafter, is defined as 
 

2 2
B Le ee w
B L

⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

.  (10) 

 
Also, the diagonal length of the rectangular footing base was used to normalize eccentricity. 
 

2 2w B L= +  (11) 
 

Although there may be other alternative reference lengths for normalizing eccentricity, the diagonal length of the 
footing, w, was selected in this study based on the observations on the extent of the failure zone, as will be presented 
later. 

Figure 26 shows two pairs of load-settlement curves for the cases of Case 1 and 2 (loading point A1, central loading) 
and Case 13 and14 (4C, eccentric loading) to confirm the repeatability of the test with satisfactory results.  
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Figure 26. Confirmation of the repeatability for 1A (central loading) and 4C (eccentric loading) 

 
Figure 27 shows the load-settlement curves for the cases of single eccentricity (Case 5 (2A), Case 8 (3A), Case 11 

(4A), Case 3 (1B) and Case 4 (1C)) together with the case of central loading (Case 1 (1A)) for comparison. The 
settlements were normalized by either the footing width B or the footing length L, depending on the direction of the 
eccentricity. The observation that the failure load, the vertical stiffness and the settlement at failure decrease as the 
eccentricity increases is consistent with the previous centrifuge loading tests (Kitazume and Ikeda, 1993, Okamura et al., 
2002). Terashi et al. (1984) gathered the previous model test data of the eccentric loading together with their own 
centrifuge test data and presented the whole data of the ratio of ultimate bearing capacity under eccentricity (qe) and that 
of without eccentricity (q) against e/B.  
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Figure 27. Load settlement curves for the single eccentricity cases (2A, 3A, 4A, 1B and 1C) with 1A. 

 
Figure 28 is a similar plot but in terms of the ratio of failure load under eccentricity (Qe) to that of without 

eccentricity (Q). The data of Terashi et al. (1984), Okamura et al. (2002) and the present study are presented in Figure 
28. The solid line in Figure 28 is Meyerhof’s hypothesis qe/q = (1-2e/B)2 for strip footing. Two observations can be 
made from the figure: one is Meyerhof’s hypothesis is conservative, the other is that the data of rectangular footing with 
a smaller aspect ratio deviate more from the solid line presenting Meyerhof’s hypothesis. 
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Figure 28. Relationships between eccentricity and failure load 

 
For the cases of double eccentricity (Case 6 (2B), Case 7 (2C), Case 9 (3B), Case 10 (3C), Case 12 (4B) and Case 14 

(4C)), the load-settlement curves are presented in Figure 29.  
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Figure 29. Load settlement curves for the double eccentricity cases (2B, 2C, 3B, 3C, 4B and 4C) 

 
The settlements are normalized by the diagonal length of the footing w. From the figure, it is also said that the failure 
load and the vertical stiffness decrease with increasing the newly defined resultant eccentricity, e , even for the double 
eccentricity. Figure 30 presents the decreasing trend of failure load with the increase of the resultant eccentricity. The 
regression curve for the line is found to be: 
 

2

1.00 2.12 1.04eQ e e
Q w w

⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. (12) 
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For practical use, the equation (13) may be modified as: 
 

2

1eQ e
Q w

⎛ ⎞= −⎜ ⎟
⎝ ⎠

. (13) 
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Figure 30. Relationship between failure load and the resultant eccentricity 

 
Figure 31 shows the plan view of the extent of the zone of failure appeared at the ground surface determined by 

visual observation as well as the surface movement measured by the potentiometers for the cases of single eccentricity 
(Case 3(1B), Case 4(1C), Case 5(2A) and Case 11(4A)).  
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Figure 31. Zone of failure appeared at the ground surface for 1B, 1C, 2A and 4A 

 
Generally, it is said that the area of failure zone decreases as the eccentricity increases, as was implied by the failure 
load. The failure zone starts from the right side corners of the footing for Case 3 (1B) and Case 4 (1C), whereas the 
failure zone develops from the bottom corners for Case 11 (4A). For these three cases, the predominant axis of the zone 
of failure almost coincides with the direction of eccentricity. In contrast, the failure zone for Case 5 (2A) exhibits more 
three dimensional mode; the failure zone develops from the upper left corner of the footing and ends at the lower right 
corner. Figure 32 presents the zone of failure for double eccentricity (Case 7(2C), Case 10(3C) and Case 13(4C)).  
 

22



 

-100 0 100 200 300

0

100

200
  2C
  3C
  4C
 Footing

Failure
zone

Loading
point

Plan view
(mm)

 
Figure 32. Zone of failure appeared at the ground surface for 2C, 3C and 4C 

 
Once again it is confirmed that the zone of failure becomes smaller with increasing eccentricity. All their failure zones 
start at the two edges; one from the lower right corner of the footing and the other from the upper left corner. It suggests 
therefore that the diagonal length of the footing, w, may be an index of the extent of the failure zone at least for double 
eccentricity. 

From a series of photographs, the coordinates of points of discontinuity clearly identified by the colored layer were 
read for various sections shown in Figure 24 and a program called AVS express 7.2 was use to compile the measured 
data and visualize the three dimensional failure mode for the cases of Case 16 (4A) for single eccentricity and Case 17 
(4C) for double eccentricity, as are given in Figure 33 (a) and (b). Type B failure mode is clearly seen in Figure 33 (a) 
for single eccentricity. However the failure mode of rectangular footing is really in three dimensional in nature. The 
zone of heave shown in light grey is observed on the no eccentricity direction as well as on the opposite side of 
eccentricity. The failure mode for double eccentricity is more complicated as is seen in Figure 33 (b). The zone of heave 
first appears around the footing and then occurs slightly away from the footing as the footing further settles. This kind 
of progressive nature of the failure mechanism was reported earlier (Eastwood, 1955). The observed three dimensional 
failure mode experimentally observed presented here provides an opportunity for people to compare their numerical 
results, such as three dimensional FEM analysis of bearing capacity (Evans and Griffiths, 2005). 
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Figure 33. Three dimensional visualization of failure mode 
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4. Concluding remarks 
 

This paper presented recent studies of bearing capacity of shallow footing under combined loading conducted at the 
Tokyo Institute of Technology. The first FEM study is part of the graduation study by Mr.T.Takayanagi, while the 
second centrifuge study is part of the Master study by Mr. R. Bando. More detailed information is available in our 
recent papers ( Takayanagi, et al.2009; Bando et al. 2010). The authors express their thanks to Dr. J. Izawa and Mr. S. 
Seki for their supports during the above studies. 
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