• 제목/요약/키워드: eccentricity

검색결과 906건 처리시간 0.058초

The questionable effectiveness of code accidental eccentricity

  • Ouazir, Abderrahmane;Hadjadj, Asma;Gasmi, Hatem;Karoui, Hatem
    • Structural Engineering and Mechanics
    • /
    • 제83권1호
    • /
    • pp.45-51
    • /
    • 2022
  • The need to account for accidental torsion in seismic design is no longer debatable, however, the seismic codes' requirement for accidental eccentricity has recently faced criticism. In order to get as close to real conditions as possible, this study investigated the impact of accidental torsion in symmetric RC multistory buildings caused by one of its many sources, the torsional earthquake component, and compared the results to those obtained by using the accidental eccentricity recommended by the codes (shifting the center of mass). To cover a wide range of frequencies and site conditions, two types of torsion seismic components were used: a recorded torsion accelerogram and five others generated using translation accelerograms. The main parameters that govern seismic responses, such as the number of stories (to account for the influence of all modes of vibration) and the frequency ratio (Ω) variation, were studied in terms of inter-story drift and displacement responses, as well as torsional moment. The results show that the eccentricity ratio of 5% required by most codes for accidental torsion should be reexamined and that it is prudent for computer analysis to use the static moment approach to implement the accidental eccentricity while waiting for new seismic code recommendations on the subject.

Seismic performance of a building base-isolated by TFP susceptible to pound with a surrounding moat wall

  • Movahhed, Ataallah Sadeghi;Zardari, Saeid;Sadoglu, Erol
    • Earthquakes and Structures
    • /
    • 제23권1호
    • /
    • pp.87-100
    • /
    • 2022
  • Limiting the displacement of seismic isolators causes a pounding phenomenon under severe earthquakes. Therefore, the ASCE 7-16 has provided minimum criteria for the design of the isolated building. In this research the seismic response of isolated buildings by Triple Friction Pendulum Isolator (TFPI) under the impact, expected, and unexpected mass eccentricity was evaluated. Also, the effect of different design parameters on the seismic behavior of structural and nonstructural elements was found. For this, a special steel moment frame structure with a surrounding moat wall was designed according to the criteria, by considering different response modification coefficients (RI), and 20% mass eccentricity in one direction. Then, different values of these parameters and the damping of the base isolation were evaluated. The results show that the structural elements have acceptable behavior after impact, but the nonstructural components are placed in a moderate damage range after impact and the used improved methods could not ameliorate the level of damage. The reduction in the RI and the enhancement of the isolator's damping are beneficial up to a certain point for improving the seismic response after impact. The moat wall reduces torque and maximum absolute acceleration (MAA) due to unexpected enhancement of mass eccentricity. However, drifts of some stories increase. Also, the difference between the response of story drift by expected and unexpected mass eccentricity is less. This indicates that the minimum requirement displacement according to ASCE 7-16 criteria lead to acceptable results under the unexpected enhancement of mass eccentricity.

유전자 알고리즘을 이용한 비대칭 강성 구조물의 내진보강 최적설계 (Optimal design of seismic reinforcement for structures with asymmetric rigidity plans using genetic algorithm)

  • 이준호;김유성;성은희
    • 한국공간구조학회논문집
    • /
    • 제24권2호
    • /
    • pp.65-73
    • /
    • 2024
  • In this study, we propose an optimal design method by applying the Prefabricated Buckling Restrained Brace (PF-BRB) to structures with asymmetrically rigidity plan. As a result of the PF-BRB optimal design of a structure with an asymmetrically rigidity plan, it can be seen that the reduction effect of dynamic response is greater in the case of arrangement considering the asymmetric distribution of stiffness (Asym) than in the case of arrangement in the form of a symmetric distribution (Sym), especially It was confirmed that at an eccentricity rate of 20%, the total amount of reinforced PF-BRBs was also small. As a result of analyzing the dynamic response characteristics according to the change in eccentricity of the asymmetrically rigidity plan, the distribution of the reinforced PF-BRB showed that the larger the eccentricity, the greater the amount of damper distribution around the eccentric position. Additionally, when comparing the analysis models with an eccentricity rate of 20% and an eccentricity rate of 12%, the response reduction ratio of the 20% eccentricity rate was found to be large.

각막 이심률과 RGP 렌즈의 중심안정위치와의 상관관계 (A Relationship between Corneal Eccentricity and Stable Centration of RGP Lens on Cornea)

  • 박은혜;김소라;박미정
    • 한국안광학회지
    • /
    • 제17권4호
    • /
    • pp.373-380
    • /
    • 2012
  • 목적: 본 연구에서는 각막 이심률과 RGP 렌즈의 중심안정위치와의 상관관계를 알아보고자 하였다. 방법: 각막 이심률이 0.28~0.78인 각막 84안을 대상으로 구면 및 비구면 RGP 렌즈를 피팅 상태를 달리하여 착용시키고 각막에서의 중심안정위치를 초고속 카메라로 촬영하여 분석하였다. 결과: 구면과 비구면 RGP 렌즈의 수평방향 중심안정위치는 이심률이 작은 각막에서는 귀쪽으로의 치우쳐짐이 컸으나 이심률이 큰 경우는 각막 중심에 더 가까이 위치하였다. 구면 및 비구면 RGP 렌즈 모두 피팅 상태가 플랫할수록 이심률에 따른 중심안정위치의 차이가 커졌으며, 비구면 RGP 렌즈의 경우 각막 이심률이 작은 경우와 큰 경우 모두 중심안정위치의 차이가 구면 RGP 렌즈 보다 더 적었다. 구면 및 비구면 RGP 렌즈 착용 시 수직방향으로의 중심안정위치는 피팅 상태에 상관없이 모두 각막 중심을 기준으로 아래쪽에 위치하였으며 각막 이심률에 따른 차이는 통계적으로 유의하지 않았다. 그러나 이심률이 클수록 RGP 렌즈가 상안검에 맞닿는 경우가 많았다. 결론: 각막 이심률에 따라 구면 RGP 렌즈뿐만 아니라 비구면 RGP 렌즈의 중심안정위치가 달라졌으므로 RGP 렌즈의 피팅 및 제조 시에 이러한 점들이 고려되어야 할 것으로 보인다.

설계편심의 크기에 따른 비틀림 비정형 건물의 최종 정적편심 크기의 비교에 관한 연구 (A Study on the Static Eccentricities of Buildings Designed by Different Design Eccentricities)

  • 이광호;정성훈
    • 한국지진공학회논문집
    • /
    • 제16권5호
    • /
    • pp.33-40
    • /
    • 2012
  • 지진하중에 의해 발생하는 비정형 건물의 피해를 줄이기 위하여 내진설계기준에서는 비틀림 증폭계수를 도입하였다. 이 계수는 내진설계기준에 따라 다르게 적용되었으며 같은 시기의 설계기준에서조차 다르게 적용되었다. 본 연구에서는 서로 다른 설계편심으로 설계된 건물의 최종 정적편심의 크기, 연약단부의 횡강성과 비틀림 강성비를 비교하였다. 비틀림 증폭계수가 증가할수록 연약단부의 횡강성이 증가하여 건물의 최종 정적편심의 크기는 감소하였으나 이 계수가 최대값 3.0에 도달한 이후부터 건물의 최종 정적편심의 크기는 다시 증가하였다. 우발편심과 정적편심의 합에 비틀림 증폭계수를 곱하여 구한 설계편심으로 설계된 건물의 최종 정적편심의 크기는 수직부재의 위치에 따라 0 또는 음수로 측정되었다.

Crack effect on the elastic buckling behavior of axially and eccentrically loaded columns

  • Zhou, L.;Huang, Y.
    • Structural Engineering and Mechanics
    • /
    • 제22권2호
    • /
    • pp.169-184
    • /
    • 2006
  • A close form solution of the maximum deflection for cracked columns with rectangular cross-sections was developed and thus the elastic buckling behavior and ultimate bearing capacity were studied analytically. First, taking into account the effect of the crack in the potential energy of elastic systems, a trigonometric series solution for the elastic deflection equation of an arbitrary crack position was derived by use of the Rayleigh-Ritz energy method and an analytical expression of the maximum deflection was obtained. By comparison with the rotational spring model (Okamura et al. 1969) and the equivalent stiffness method (Sinha et al. 2002), the advantages of the present solution are that there are few assumed conditions and the effect of axial compression on crack closure was considered. Second, based on the above solutions, the equilibrium paths of the elastic buckling were analytically described for cracked columns subjected to both axial and eccentric compressive load. Finally, as examples, the influence of crack depth, load eccentricity and column slenderness on the elastic buckling behavior was investigated in the case of a rectangular column with a single-edge crack. The relationship of the load capacity of the column with respect to crack depth and eccentricity or slenderness was also illustrated. The analytical and numerical results from the examples show that there are three kinds of collapse mechanisms for the various states of cracking, eccentricity and slenderness. These are the bifurcation for axial compression, the limit point instability for the condition of the deeper crack and lighter eccentricity and the fracture for higher eccentricity. As a result, the conception of critical transition eccentricity $(e/h)_c$, from limit-point buckling to fracture failure, was proposed and the critical values of $(e/h)_c$ were numerically determined for various eccentricities, crack depths and slenderness.

외압하에서 해저배관의 소성붕괴에 대한 두께 불균일 효과 (Effect of Thickness Eccentricity on Plastic Collapse of Subsea Pipeline under External Pressure)

  • 백종현;김영표;김우식
    • 한국가스학회지
    • /
    • 제15권6호
    • /
    • pp.14-19
    • /
    • 2011
  • 원주 방향의 두께가 불균일한 해저배관에 대한 건전성을 검토하기 위하여 수압에 의한 소성붕괴 저항성을 평가하였다. 본 연구에서는 해저배관에 부가되는 주하중을 수압으로 설정하여 4, 8, 12 및 16%의 두께편차율을 갖는 API 5L X65와 API 5L X80 배관의 소성붕괴압력 변화에 미치는 영향을 유한요소해석을 통하여 평가하였다. 두께 편차율이 증가하면 소성붕괴압력이 감소하며 두께편차율이 동일하면 직경대 두께비가 증가함에 따라 소성붕괴 압력은 감소한다.

4밸브 디젤기관의 흡기포트 편심이 실린더 내 선회비 특성에 끼치는 영향에 관한 연구 (A Study on the Effects of Intake Port Eccentricity on the In-cylinder Swirl Ratio Characteristics in a 4 Valve Diesel Engine)

  • 이지근;강신재;노병준
    • 한국자동차공학회논문집
    • /
    • 제5권5호
    • /
    • pp.157-169
    • /
    • 1997
  • The effects of intake port eccentricity on the characteristics of in-cylinder swirl ratio in a 4-valve diesel engine having the two intake ports; one is a helical intake port and the other is a tangential intake port were investigated by using the ISM(impulse swirl meter) in steady flow test rig. Swirl ratio($R_s$) and mean flow coefficient($C_{f(mean)}$) with valve eccentricity ratio($N_y$) and axial distance(Z/B) were measured. As the results from this experiment, the characteristics of in-cylinder swirl ratio formed by a 4-valve cylinder head were largely affected by intake port eccentricity. There is a difference in the mass flowrate through the two intake ports, and the mass flowrate through the tangential intake port is 19% more than that of the helical intake port. Therefore, we could know that the effects of the mass flowrate ratio through each intake port besides intake port shape should be conidered.

  • PDF

Bearing capacity of shallow footing under combined loading

  • Kusakabe, Osamu;Takeyama, Tomohide
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.3-25
    • /
    • 2010
  • The paper deals with two bearing capacity problems of shallow footing under combined loading. The first is a FEM study of shallow strip footing on two-layer clay deposits subjected to a vertical, horizontal and moment combined loading, while the second is a centrifuge study of shallow rectangular footing on dry sand under double eccentricity. The FEM results revealed that the existence of top soft layer sensitively affects more on horizontal and moment capacity than vertical capacity for cases of footing on soft clay overlying stiff clay. Practical design charts are presented to evaluate bearing capacities of footing for various combinations of the ratio of the depth of the upper layer to the footing width and the ratio of undrained strength of the upper layer to that of the lower. The centrifuge tests indicated that current design practice of calculating failure load of rectangular surface footing under double eccentricity underestimates the centrifuge loading test data. This trend is more marked when the eccentricity becomes larger. The decreasing trend in failure load with an increase of double eccentricity is rather uniquely expressed by a single curve, using a newly defined resultant eccentricity and the diagonal length of the footing base.

  • PDF

연속 냉간 압연기의 H$\infty$ 제어시스템 설계 (Design of H$\infty$ Control System for Tandem Cold Mills)

  • Hyuk Um;Kim, Seung-Soo;Yang, Soon-Yong;Lee, Jin-Gul
    • 한국공작기계학회논문집
    • /
    • 제13권4호
    • /
    • pp.44-55
    • /
    • 2004
  • In order to meet the requirement for higher thickness accuracy in tandem cold rolling processes, it is strongly necessary to have good performance in control units. To meet this requirement, this paper suggested an output regulating control system with a roll-eccentricity estimator for each rolling stand of tandem cold mills. Considering entry thickness variation and roll eccentricity simultaneously as the major disturbances, a synthesis of multivariable control systems was presented based on H$\infty$ control theory, which could reflect the knowledge of input direction and spectrum of disturbance signals on design. Then, to effectively reject roll eccentricity, a weight function having some poles on the imaginary axis was introduced. This lead to a non-standard H$\infty$ control problem, and the design procedures for solving this problem were analytically presented. The effectiveness of the proposed control method was evaluated through computer simulations and compared to that of the conventional linear quardratic control and feedforward control methods for roll eccentricity.