• 제목/요약/키워드: eccentric vortex

검색결과 17건 처리시간 0.019초

비정렬 유한 체적법을 이용한 횡류홴 유동장 해석 (Prediction of Cross Flow Fan Flow Using an Unstructured Finite Volume Method)

  • 강동진;배상수
    • 한국유체기계학회 논문집
    • /
    • 제8권3호
    • /
    • pp.7-15
    • /
    • 2005
  • A Navier-Stokes code has been developed to simulate the flow through a cross flow fan. It is based on an unstructured finite volume method and uses moving grid technique to model the rotation of the fan. A low Reynolds number turbulence model is used to calculate eddy viscosity. The basic algorithm is SIMPLE. Numerical simulations over a wide range of flow rate aye carried out to validate the code. Comparison of all numerical solutions with experimental data confirms the validity of the present code. Present numerical solutions show a noticeable improvement over a previous numerical method which is based on a model of body force to simulate the rotation of the impeller.

횡류팬 흡입구의 위치가 성능 및 소음 특성에 미치는 영향 (The Influence of the Intake Regions of the Cross-flow fan on the Performance and Fan Noise)

  • 김진백;최원석;이재권
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.78-82
    • /
    • 2004
  • The cross-flow fan which is used for air-conditioner indoor units were studied experimentally. The recent trend shows that the room air-conditioners need to be good-looking. According to the visual design concepts the intake regions of the fan can vary, which leads to the loss of the performance and the increase of the noise of the fan. In order to optimize the performance of the fan and minimize the aerodynamic noise for the system, the performance characteristics and the noise of the cross-flow fan have been investigated at the various conditions of the intake region of the unit.

  • PDF

비정렬 유한 체적법을 이용한 횡류 홴 유동장 해석 (Prediction of Cross Flow Fan Flow Using an Unstructured Finite Volume Method)

  • 강동진;배상수
    • 한국유체기계학회 논문집
    • /
    • 제9권4호
    • /
    • pp.27-35
    • /
    • 2006
  • A Navier-Stokes code has been developed to simulate the flow through a cross flow fan. It is based on an unstructured finite volume method and uses moving grid technique to model the rotation of the fan. A low Reynolds number turbulence model is used to calculate eddy viscosity. The basic algorithm is SIMPLE. Numerical simulations over a wide range of flow rate are carried out to validate the code. Comparison of all numerical solutions with experimental data confirms the validity of the present code. Present numerical solutions show a noticeable improvement over a previous numerical method which is based on a model of body force to simulate the rotation of the impeller.

관류홴의 최대유량역에서 설계인자 변화에 따른 공력성능 특성에 관한 실험적 연구 (Experimental Study on the Aerodynamic Performance Characteristics for Various Design Factors in the Maximum Flowrate Range of a Cross-Flow Fan)

  • 김장권
    • 동력기계공학회지
    • /
    • 제9권3호
    • /
    • pp.44-49
    • /
    • 2005
  • The aerodynamic performance of an indoor room air-conditioner using a cross-flow fan is strongly influenced by the various design factors of a rear-guider and a stabilizer. The purpose of this study is to investigate the effects of a rear-guider and a stabilizer on the aerodynamic performance in the maximum flowrate range of a cross-flow fan. The design factors considered in this study are a rear-guider clearance, a stabilizer cutoff clearance, and a stabilizer setup angle, respectively. Aerodynamic performances including maximum flowrate and power show the biggest magnitude distribution in the case of $45^{\circ}$, the stabilizer setup angle as well as nearly similar magnitude distribution regardless of the stabilizer cutoff clearances. Moreover, the more a rear-guider clearance increases, the more the magnitude of maximum flowrate and power increases.

  • PDF

Aspect-Ratio Effects and Unsteady Pressure Measurements inside a Cross-Flow Impeller

  • Hirata, Katsuya;Onishi, Yusuke;Nagasaka, Shigeya;Matsumoto, Ryo;Funaki, Jiro
    • International Journal of Fluid Machinery and Systems
    • /
    • 제5권3호
    • /
    • pp.117-125
    • /
    • 2012
  • In the present experimental study, the authors try to clarify the characteristics of the flow around and inside a cross-flow impeller in a typical geometry, over a wide parameter range of an aspect ratio $L/D_2$. In order to eliminate the complicated casing factors, the impeller rotates in open space without any casings. As a result, by using hot wire anemometer measurements and by conventional flow visualisations with a particle image velocimetry technique, the authors show that both the outflow rate and the maximum vorticity attain the maximum for $L/D_2$ = 0.6. In order to investigate the aspect-ratio effect, we further reveal minute fluctuating pressures on an impeller end wall for a singular $L/D_2$ = 0.6. Especially in these pressure measurements, the eccentric vortex is prevented to revolute by the insertion of a tongue, in order to consider the spatial structure of flow more precisely.

룸에어콘 실내기의 설계인자 변화에 따른 관류홴의 공력성능 연구 (Study on the Aerodynamic Performance of a Cross-Flow Fan for the Various Design Factors of an Indoor Room Air-Conditioner)

  • 김장권;정규조
    • 동력기계공학회지
    • /
    • 제9권3호
    • /
    • pp.33-38
    • /
    • 2005
  • The aerodynamic performance of a cross-flow fan is strongly influenced by the various design factors of a rear-guider and a stabilizer. The purpose of this paper is to investigate the effects of a rear-guider and a stabilizer on the aerodynamic performance of a cross-flow fan. The design factors considered in this paper are a rear-guider clearance, a stabilizer clearance, and a stabilizer setup angle, respectively. This experiment was carried out with a constant revolution number of 700 rpm in a cross-flow fan installed in the fan tester. The static pressure, flowrate, torque, and revolution number were measured in this paper. Also, the pressure coefficient and the efficiency were analysed according to the various assembly conditions using a stabilizer setup angle, a stabilizer clearance, and a rear-guider clearance in the indoor room air-conditioner.

  • PDF

관류홴의 설계인자 변화에 따른 리어가이더의 표면압력 특성에 관한 실험적 연구 (Experimental Study on the Surface Pressure Characteristics of a Rear-Guider for the Various Design Factors of a Cross-Flow Fan)

  • 김장권
    • 동력기계공학회지
    • /
    • 제9권3호
    • /
    • pp.50-57
    • /
    • 2005
  • A cross-flow fan is strongly influenced by the various design factors of a rear-guider and a stabilizer. The purpose of this paper is to investigate the effects of a rear-guider and a stabilizer on the surface pressure of a rear-guider in an indoor room air-conditioner using a cross-flow fan. The design factors considered in this paper are a rear-guider clearance, a stabilizer clearance, and a stabilizer setup angle, respectively. The operating condition of a cross-flow fan was controlled by changing the static pressure and flowrate using a fan tester. All surface pressures of a rear-guider are differently distributed according to the stabilizer setup angle, and show a zero value in the flow coefficient, ${\Phi}{\fallingdotseq}0.5$ only of a stabilizer setup angle, $45^{\circ}$. Especially, they show a big negative value in the expansion angle larger than $34^{\circ}$ regardless of a rear-guider clearance, a stabilizer clearance, and a stabilizer setup angle. On the other hand, surface pressures for various stabilizer cutoff clearances are better than those for various rear-guider clearances.

  • PDF