• Title/Summary/Keyword: eccentric shear stress

Search Result 30, Processing Time 0.029 seconds

Functionally Graded Piezoelectric Strip with Eccentric Crack Under Anti-plane Shear

  • Shin, Jeong-Woo;Kim, Tae-Uk
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.854-859
    • /
    • 2003
  • In this paper, we examine the singular stresses and electric fields in a functionally graded piezoelectric ceramic strip containing an eccentric crack off the center line under anti-plane shear loading with the theory of linear piezoelectricity. It is assumed that the properties of the functionally graded piezoelectric ceramic strip vary continuously along the thickness. Fourier transforms are used to reduce the problem to the solution of two pairs of dual integral equations, which are then expressed to a Fredholm integral equation of the second kind. Numerical values on the stress intensity factor and the energy release rate are obtained.

A numerical study on the flow in an eccentric annulus (편심 환형관내 유동에 대한 수치 해석적 연구)

  • Woo, Nam-Sub;Seo, Byung-Taek;Bae, Kyung-Su;Hwang, Young-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1863-1868
    • /
    • 2004
  • The present study concerns a computational study of fully developed laminar flow of a Newtonian fluid through an eccentric annulus with a combined bulk axial flow and inner cylinder rotation. This study considers the identical flow geometry as in the calculation of Escudier et $al.^{(3)}$ An unexpected feature of the calculations for eccentricity ${\varepsilon}$)0.7 is the appearance of a second peak in the axial velocity, located in the narrowing gap. The distribution of the axial component of the surface shear stress has a maximum in the narrowing gap and a minimum in the widening gap.

  • PDF

Interaction of internal forces of exterior beam-column joints of reinforced concrete frames under seismic action

  • Zhou, Hua;Zhang, Zhisheng
    • Structural Engineering and Mechanics
    • /
    • v.44 no.2
    • /
    • pp.197-217
    • /
    • 2012
  • Detailed analysis of internal forces of exterior beam-column joints of RC frames under seismic action is reported in this paper. A formula is derived for calculating the average joint shear from the column shears, and a formula is proposed to estimate torque in eccentric joints induced by seismic action. Average joint shear stress and strain are defined consistently for exterior joints, which can be used to establish joint shear constitutive relationship. Numerical results of shear, bending moment and torque in joints induced by seismic action are presented for a pair of concentric and eccentric exterior connections extracted from a seismically designed RC frame, and two sections located at the levels of beam bottom and top reinforcement, respectively, are identified as the critical joint sections for evaluating seismic joint behavior. A simplified analysis of the effects of joint shear and torque on the flexural strengths of the critical joint sections is made for the two connections extracted from the frame, and the results indicate that joint shear and torque induced by a strong earthquake may lead to "joint-hinging" mechanism of seismically designed RC frames.

Dynamic Characteristics of an Eccentric Crack in a Functionally Graded Piezoelectric Ceramic Strip

  • Shin, Jeong-Woo;Kim, Tae-Uk;Kim, Sung-Chan
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1582-1589
    • /
    • 2004
  • The dynamic response of an eccentric Griffith crack in functionally graded piezoelectric ceramic strip under anti-plane shear impact loading is ana lysed using integral transform method. Laplace transform and Fourier transform are used to reduce the problem to two pairs of dual integral equations, which are then expressed to Fredholm integral equations of the second kind. We assume that the properties of the functionally graded piezoelectric material vary continuously along the thickness. The impermeable crack boundary condition is adopted. Numerical values on the dynamic stress intensity factors are presented for the functionally graded piezoelectric material to show the dependence of the gradient of material properties and electric loadings.

A Study on Unbalanced Moment of Flat Plate Exterior Connections (플랫 플레이트 외부접합부의 불균형모멘트에 관한연구)

  • Choi, Hyun-Ki;Beck, Seong-Woo;Back, Young-Soo;Jin, Eon-Sik;Choi, Chang-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1-4
    • /
    • 2008
  • Flat plate slab has been widely used in high rise building for its remarkable advantages. However, Flat plate structures under lateral load are susceptible to punching shear of the slab-column connection. Exterior slab-column connections has an unsymmetrical critical section for eccentric shear of which perimeter is less than that of interior connection, and hence, around the connection, unbalanced moment and eccentric shear are developed by both gravity load and lateral loads. Therefore, exterior connections is susceptible to punching shear failure. For that reason, this study compare ACI 318-05 to CEB-FIP MC 90 that is based on experiment results and existing data of flat plate exterior connections. This study shows that compared to CEB-FIP MC 90 is more exact about eccentric shear stress, unbalanced moment and Both of all are not suitable in large column aspect ratio. Considering gravity shear ratio, These are suitable but design condition only consider gravity shear ratio. So these should be considered differences from change of design condition

  • PDF

Variations in Ductility of Shear Wall with Length of Boundary Confinement (단부 횡보강영역에 따른 전단벽 연성도의 변화)

  • 강수민;오재은;박홍근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.853-858
    • /
    • 2001
  • Experimental studies were peformed to investigate variations in ductility of shear wall with length of boundary confinement. Eight specimens containg different lengths of confinment zone, which model compressive zone in plastic regions of shear walls, were tested against eccentric vetical load. Stress-strain model for confined concrete was used to predict strength and ductility of the specimens, which was compared to the test results. The results obtained show that failure of the compressive zone occurs in a brittle manner when the stress of unconfined zone softened after the ultimate strength were reached. To enhance the ductility of shear walls with concentrated confinement zone such as barbell-type walls, the ultimate strength of the confinement zone needs to be increased, and for shear walls with distributed confinement zone the length of the confinement zone needs to be extended.

  • PDF

Strength of prestressed concrete beams in torsion

  • Karayannis, Chris G.;Chalioris, Constantin E.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.2
    • /
    • pp.165-180
    • /
    • 2000
  • An analytical model with tension softening for the prediction of the capacity of prestressed concrete beams under pure torsion and under torsion combined with shear and flexure is introduced. The proposed approach employs bilinear stress-strain relationship with post cracking tension softening branch for the concrete in tension and special failure criteria for biaxial stress states. Further, for the solution of the governing equations a special numerical scheme is adopted which can be applied to elements with practically any cross-section since it utilizes a numerical mapping. The proposed method is mainly applied to plain prestressed concrete elements, but is also applicable to prestressed concrete beams with light transverse reinforcement. The aim of the present work is twofold; first, the validation of the approach by comparison between experimental results and analytical predictions and second, a parametrical study of the influence of concentric and eccentric prestressing on the torsional capacity of concrete elements and the interaction between torsion and shear for various levels of prestressing. The results of this investigation presented in the form of interaction curves, are compared to experimental results and code provisions.

Eccentric Crack in a Piezoelectric Strip Under Electro-Mechanical Loading

  • Lee, Kang-Yong;Shin, Jeong-Woo;Kwon, Soon-Man
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.21-25
    • /
    • 2001
  • We consider the problem of determining the singular stresses and electric fields in a piezoelectric ceramic strip containing a Griffith eccentric crack off the center line under anti-plane shear loading with the theory of linear piezoelectricity. Fourier transforms are used to reduce the problem to the solution of two pairs of dual integral equations, which are then expressed to a Fredholm integral equation of the second kind. Numerical values on the stress intensity factor and the energy release rate are obtained, and the influences of the electric fields for piezoelectric ceramics are discussed.

  • PDF

The Crack Problem for Functionally Graded Piezoelectric Ceramic Strip (기능 경사 압전 세라믹 스트립의 균열에 관한 연구)

  • 신정우;김성찬
    • Composites Research
    • /
    • v.15 no.4
    • /
    • pp.37-42
    • /
    • 2002
  • We consider the problem of determining the singular stresses and electric fields in a functionally graded piezoelectric ceramic strip containing a Griffith eccentric crack under anti-plane shear loading with the theory of linear piezoelectricity. Fourier transforms are used to reduce the problem to the solution of two pairs of dual integral equations, which are then expressed to a Fredholm integral equation of the second kind. Numerical values on the stress intensity factor and the energy release rate are obtained.

Interaction of internal forces of interior beam-column joints of reinforced concrete frames under seismic action

  • Zhou, Hua;Zhang, Jiangli
    • Structural Engineering and Mechanics
    • /
    • v.52 no.2
    • /
    • pp.427-443
    • /
    • 2014
  • This paper presents detailed analysis of the internal forces of interior beam-column joints of reinforced concrete (RC) frames under seismic action, identifies critical joint sections, proposes consistent definitions of average joint shear stress and average joint shear strain, derives formulas for calculating average joint shear and joint torque, and reports simplified analysis of the effects of joint shear and torque on the flexural strengths of critical joint sections. Numerical results of internal joint forces and flexural strengths of critical joint sections are presented for a pair of concentric and eccentric interior connections extracted from a seismically designed RC frame. The results indicate that effects of joint shear and torque may reduce the column-to-beam flexural strength ratios to below unity and lead to "joint-yielding mechanism" for seismically designed interior connections. The information presented in this paper aims to provide some new insight into the seismic behavior of interior beam-column joints and form a preliminary basis for analyzing the complicated interaction of internal joint forces.