• 제목/요약/키워드: earthquake-resistance

검색결과 387건 처리시간 0.025초

Computational evaluation of experimental methodologies of out-of-plane behavior of framed-walls with openings

  • Anic, Filip;Penava, Davorin;Abrahamczyk, Lars;Sarhosis, Vasilis
    • Earthquakes and Structures
    • /
    • 제16권3호
    • /
    • pp.265-277
    • /
    • 2019
  • Framed masonry wall structures represent a typical high-rise structural system that are also seismically vulnerable. During ground motions, they are excited in both in-plane and out-of-plane terms. The interaction between the frame and the infill during ground motion is a highly investigated phenomenon in the field of seismic engineering. This paper presents a numerical investigation of two distinct static out-of-plane loading methods for framed masonry wall models. The first and most common method is uniformly loaded infill. The load is generally induced by the airbag. The other method is similar to in-plane push-over method, involves loading of the frame directly, not the infill. Consequently, different openings with the same areas and various placements were examined. The numerical model is based on calibrated in-plane bare frame models and on calibrated wall models subjected to OoP bending. Both methods produced widely divergent results in terms of load bearing capabilities, failure modes, damage states etc. Summarily, uniform load on the panel causes more damage to the infill than to the frame; openings do influence structures behavior; three hinged arching action is developed; and greater resistance and deformations are obtained in comparison to the frame loading method. Loading the frame causes the infill to bear significantly greater damage than the infill; infill and openings only influence the behavior after reaching the peak load; infill does not influence initial stiffness; models with opening fail at same inter-storey drift ratio as the bare frame model.

Shaking table tests on seismic response of backdrop metal ceilings

  • Zhou, Tie G.;Wei, Shuai S.;Zhao, Xiang;Ma, Le W.;Yuan, Yi M.;Luo, Zheng
    • Steel and Composite Structures
    • /
    • 제32권6호
    • /
    • pp.807-819
    • /
    • 2019
  • In recent earthquakes, the failure of ceiling systems has been one of the most widely reported damage and the major cause of functionality interruption in some buildings. In an effort to mitigate this damage, some scholars have studied a series of ceiling systems including plaster ceilings and mineral wool ceilings. But few studies have involved the backdrop metal ceiling used in some important constructions with higher rigidity and frequency such as the main control area of nuclear power plants. Therefore, in order to evaluate its seismic performance, a full-scale backdrop metal ceiling system, including steel runners and metal panels, was designed, fabricated and installed in a steel frame in this study. And the backdrop metal ceiling system with two perimeter attachments variants was tested: (i) the ends of the runners were connected with the angle steel to form an effective lateral constraint around the backdrop metal ceiling, (ii) the perimeter attachments of the main runner were retained, but the perimeter attachments of the cross runner were removed. In the experiments, different damage of the backdrop metal ceiling system was observed in detail under various earthquakes. Results showed that the backdrop metal ceiling had good integrity and excellent seismic performance. And the perimeter attachments of the cross runner had an adverse effect on the seismic performance of the backdrop metal ceiling under earthquakes. Meanwhile, a series of seismic construction measures and several suggestions that need to be paid attention were proposed in the text so that the backdrop metal ceiling can be better applied in the main control area of nuclear power plants and other important engineering projects.

Anti-seismic behavior of composite precast utility tunnels based on pseudo-static tests

  • Yang, Yanmin;Tian, Xinru;Liu, Quanhai;Zhi, Jiabo;Wang, Bo
    • Earthquakes and Structures
    • /
    • 제17권2호
    • /
    • pp.233-244
    • /
    • 2019
  • In this work, we have studied the effects of different soil thicknesses, haunch heights, reinforcement forms and construction technologies on the seismic performance of a composite precast fabricated utility tunnel by pseudo-static tests. Five concrete specimens were designed and fabricated for low-cycle reciprocating load tests. The hysteretic behavior of composite precast fabricated utility tunnel under simulated seismic waves and the strain law of steel bars were analyzed. Test results showed that composite precast fabricated utility tunnel met the requirements of current codes and had good anti-seismic performance. The use of a closed integral arrangement of steel bars inside utility tunnel structure as well as diagonal reinforcement bars at its haunches improved the integrity of the whole structure and increased the bearing capacity of the structure by about 1.5%. Increasing the thickness of covering soil within a certain range was beneficial to the earthquake resistance of the structure, and the energy consumption was increased by 10%. Increasing haunch height within a certain range increased the bearing capacity of the structure by up to about 19% and energy consumption by up to 30%. The specimen with the lowest haunch height showed strong structural deformation with ductility coefficient of 4.93. It was found that the interfaces of haunches, post-casting self-compacting concrete, and prefabricated parts were the weak points of utility tunnel structures. Combining the failure phenomena of test structures with their related codes, we proposed improvement measures for construction technology, which could provide a reference for the construction and design of practical projects.

Seismic analysis of high-rise steel frame building considering irregularities in plan and elevation

  • Mohammadzadeh, Behzad;Kang, Junsuk
    • Steel and Composite Structures
    • /
    • 제39권1호
    • /
    • pp.65-80
    • /
    • 2021
  • Irregularities of a building in plan and elevation, which results in the change in stiffness on different floors highly affect the seismic performance and resistance of a structure. This study motivated to investigate the seismic responses of high-rise steel-frame buildings of twelve stories with various stiffness irregularities. The building has five spans of 3200 mm distance in both X- and Z-directions in the plan. The design package SAP2000 was adopted for the design of beams and columns and resulted in the profile IPE500 for the beams of all floors and box sections for columns. The column cross-section dimensions vary concerning the number of the story; one to three: 0.50×0.50×0.05m, four to seven: 0.45×0.45×0.05 m, and eight to twelve: 0.40×0.40×0.05 m. Real recorded ground accelerations obtained from the Vrancea earthquake in Romania together with dead and live loads corresponding to each story were considered for the applied load. The model was validated by comparing the results of the current method and literature considering a three-bay steel moment-resisting frame of eight-story height subject to seismic load. To investigate the seismic performance of the buildings, the time-history analysis was performed using ABAQUS. Deformed shapes corresponding to negative and positive peaks were provided followed by the story drifts and fragility curves which were used to examine the probability of collapse of the building. From the results, it was concluded that regular buildings provided a seismic performance much better than irregular buildings. Furthermore, it was observed that building with torsional irregularity was more vulnerable to seismic failure.

보부재 불연속성과 수평비정형성을 고려한 건물의 풍하중과 지진하중에 의한 응답해석 (Structural Performance Assessment of Buildings Considering Beam Discontinuity and Horizontal Irregularity under Wind and Earthquake Loads)

  • 수딥타 차크라보르티;앰디 라지불 이스람;김두기
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권5호
    • /
    • pp.10-19
    • /
    • 2022
  • 구조물의 비정형성이 풍하중과 지진하중을 받는 구조물의 안전성에 미치는 영향에 대해 검토하였다. 층별 보부재의 불연속성과 O자형 수평비정형성의 관점에서 4가지 유형의 구조물을 선정하여 구조거동을 평가하였다. ACI 318-11 조건에 대해 풍하중 및 지진하중에 의한 구조물의 변위, 휨모멘트, 축력, 비틀림, 층간변위 응답을 검토하였다. 보부재 불연속성을 갖는 구조물의 상부에 갖는 건물이 가장 큰 복원력을 보였으며, O자형 수평비정형 건물은 전도에 대한 저항이 크므로 횡하중에 대해 안전하였다.

Assessment of seismic stability of finite slope in c-ϕ soils - a plasticity approach

  • Shibsankar, Nandi;G., Santhoshkumar ;Priyanka, Ghosh
    • Geomechanics and Engineering
    • /
    • 제31권5호
    • /
    • pp.439-452
    • /
    • 2022
  • A forecast of slope behavior during catastrophic events, such as earthquakes is crucial to recognize the risk of slope failure. This paper endeavors to eliminate the significant supposition of predefined slip surfaces in the slope stability analysis, which questions the relevance of simple conventional methods under seismic conditions. To overcome such limitations, a methodology dependent on the slip line hypothesis, which permits an automatic generation of slip surfaces, is embraced to trace the extreme slope face under static and seismic conditions. The effect of earthquakes is considered using the pseudo-static approach. The current outcomes developed from a parametric study endorse a non-linear slope surface as the extreme profile, which is in accordance with the geomorphological aspect of slopes. The proposed methodology is compared with the finite element limit analysis to ensure credibility. Through the design charts obtained from the current investigation, the stability of slopes can be assessed under seismic conditions. It can be observed that the extreme slope profile demands a flat configuration to endure the condition of the limiting equilibrium at a higher level of seismicity. However, a concurrent enhancement in the shear strength of the slope medium suppresses this tendency by offering greater resistance to the seismic inertial forces induced in the medium. Unlike the traditional linear slopes, the extreme slope profiles mostly exhibit a steeper layout over a significant part of the slope height, thus ensuring a more optimized solution to the slope stability problem. Further, the susceptibility of the Longnan slope failure in the Huining-Wudu seismic belt is predicted using the current plasticity approach, which is found to be in close agreement with a case study reported in the literature. Finally, the concept of equivalent single or multi-tiered planar slopes is explored through an example problem, which exhibits the appropriateness of the proposed non-linear slope geometry under actual field conditions.

Time-dependent seismic risk analysis of high-speed railway bridges considering material durability effects

  • Yan Liang;Ying-Ying Wei;Ming-Na Tong;Yu-Kun Cui
    • Earthquakes and Structures
    • /
    • 제24권4호
    • /
    • pp.275-288
    • /
    • 2023
  • Based on the crucial role of high-speed railway bridges (HSRBs) in the safety of high-speed railway operations, it is an important approach to mitigate earthquake hazards by proceeding with seismic risk assessments in their whole life. Bridge seismic risk assessment, which usually evaluates the seismic performance of bridges from a probabilistic perspective, provides technical support for bridge risk management. The seismic performance of bridges is greatly affected by the degradation of material properties, therefore, material damage plays a nonnegligible role in the seismic risk assessment of the bridge. The effect of material damage is not considered in most current studies on seismic risk analysis of bridges, nevertheless. To fill the gap in this area, in this paper, a nonlinear dynamic time-history analysis has been carried out by establishing OpenSees finite element model, and a seismic vulnerability analysis is carried out based on the incremental dynamic analysis (IDA) method. On this basis, combined with the site risk analysis, the time-dependent seismic risk analysis of an offshore three-span HSRB in the whole life cycle has been conducted. The results showed that the seismic risk probabilities of both components and system of the bridge increase with the service time, and their seismic risk probabilities increase significantly in the last service period due to the degradation of the material strength, which demonstrates that the impact of durability damage should be considered when evaluating the seismic performance of bridges in the design and service period.

초탄성 형상기억합금을 적용한 선행압축 폴리우레탄 댐퍼의 거동 특성 검증 (Verification of Behavior Characteristics of Precompression Polyurethane Damper Using Superelastic Shape Memory Alloy)

  • 김영찬;허종완
    • 대한토목학회논문집
    • /
    • 제43권4호
    • /
    • pp.413-420
    • /
    • 2023
  • 지진피해 감소를 위한 내진 구조 중에서 제진 구조는 댐퍼의 간단한 적용으로 효율적으로 내진 성능을 향상시키고 경제성을 확보할 수 있는 기술이다. 그러나 기존의 댐퍼는 요구 내진 성능과 재료 소성으로 인한 내구성에 대하여 한계를 나타낸다. 따라서 본 연구에서는 기본적으로 탄성 특성을 나타내는 폴리우레탄에 선행 압축을 가하고 초탄성 형상기억합금을 적용하여 복원 특성을 증진시킨 폴리우레탄 댐퍼를 제안하였다. 폴리우레탄 댐퍼의 특성을 검증하기 위하여 우선 개념을 정립하고 초탄성 형상기억합금과 강재 적용, 선행압축 크기를 설계 변수로 선정하여 설계 상세를 완성하였다. 또한, 구조 실험을 수행하여 응답 거동을 도출하여 하중 저항 성능, 잔류 변위, 회복률, 에너지 소산 능력을 분석하였다. 분석한 결과 폴리우레탄 댐퍼는 초탄성 형상기억합금 와이어를 적용하고 선행 압축이 증가하면 다양한 성능이 향상되는 결과를 나타냈다.

Influence of grain size ratio and silt content on the liquefaction potentials of silty sands

  • Sonmezer, Yetis Bulent;Kayabali, Kamil;Beyaz, Turgay;Fener, Mustafa
    • Geomechanics and Engineering
    • /
    • 제31권2호
    • /
    • pp.167-181
    • /
    • 2022
  • Soil liquefaction has been one of the most important concerns in geotechnical earthquake engineering in recent years, due to its damages to structures and its destructive effects. The cyclic liquefaction of silty sands, in particular, remains of great interest for both research and application. Although many factors are known that affect the liquefaction resistance of sands, the effect of fine grain content is perhaps one of the most studied and still controversial. In this study, 48 deformation-controlled cyclic simple shear tests were performed on BS and CS silt samples mixed with 5%, 15% and 30% by weight of Krk085, Krk042 and Krk025 sands in constant-volume conditions to determine the liquefaction potential of silty sands. The tests were carried out at 30% and 50% relative density and under 100 kPa effective stress. The results revealed that the liquefaction potential of silty sand increases with increasing average particle size ratio (D50sand / d50silt) of the mixture for a fixed silt content. Furthermore, for identical base sand, the liquefaction potentials of coarse grained sands increase with increasing silt content, while the respective potentials of fine grained sands generally decrease. However, this situation may vary depending on the silt grain structure and is affected by the nature of the fine grains. In addition, the variation of the void ratio interval was shown to provide a good intuition in determining the liquefaction potentials of silty sands, while the intergranular void ratio alone does not constitute a criterion for determining the liquefaction potentials of silty sands.

Key technologies research on the response of a double-story isolated structure subjected to long-period earthquake motion

  • Liang Gao;Dewen Liu;Yuan Zhang;Yanping Zheng;Jingran Xu;Zhiang Li;Min Lei
    • Earthquakes and Structures
    • /
    • 제26권1호
    • /
    • pp.17-30
    • /
    • 2024
  • Earthquakes can lead to substantial damage to buildings, with long-period ground motion being particularly destructive. The design of high-performance building structures has become a prominent focus of research. The double-story isolated structure is a novel type of isolated structure developed from base isolated structure. To delve deeper into the building performance of double-story isolated structures, the double-story isolated structure was constructed with the upper isolated layer located in different layers, alongside a base isolated structure for comparative analysis. Nonlinear elastoplastic analyses were conducted on these structures using different ground motion inputs, including ordinary ground motion, near-field impulsive ground motion, and far-field harmonic ground motion. The results demonstrate that the double-story isolated structure can extend the structural period further than the base isolated structure under three types of ground motions. The double-story isolated structure exhibits lower base shear, inter-story displacement, base isolated layer displacement, story shear, and maximum acceleration of the top layer, compared to the base isolated structure. In addition, the double-story isolated structure generates fewer plastic hinges in the frame, causes less damage to the core tube, and experiences smaller overturning moments, demonstrating excellent resistance to overturning and a shock-absorbing effect. As the upper isolated layer is positioned higher, the compressive stress on the isolated bearings of the upper isolated layer in the double-story isolated structure gradually decreases. Moreover, the compressive stress on the isolated bearings of the base isolated layer is lower compared to that of the base isolated structure. However, the shock-absorbing capacity of the double-story isolated structure is significantly increased when the upper isolated layer is located in the middle and lower section. Notably, in regions exposed to long-period ground motion, a double-story isolated structure can experience greater seismic response and reduced shock-absorbing capacity, which may be detrimental to the structure.