Browse > Article
http://dx.doi.org/10.12989/gae.2022.31.5.439

Assessment of seismic stability of finite slope in c-ϕ soils - a plasticity approach  

Shibsankar, Nandi (Department of Civil Engineering, Indian Institute of Technology Kanpur)
G., Santhoshkumar (School of Infrastructure, Indian Institute of Technology Bhubaneswar)
Priyanka, Ghosh (Department of Civil Engineering, Indian Institute of Technology Kanpur)
Publication Information
Geomechanics and Engineering / v.31, no.5, 2022 , pp. 439-452 More about this Journal
Abstract
A forecast of slope behavior during catastrophic events, such as earthquakes is crucial to recognize the risk of slope failure. This paper endeavors to eliminate the significant supposition of predefined slip surfaces in the slope stability analysis, which questions the relevance of simple conventional methods under seismic conditions. To overcome such limitations, a methodology dependent on the slip line hypothesis, which permits an automatic generation of slip surfaces, is embraced to trace the extreme slope face under static and seismic conditions. The effect of earthquakes is considered using the pseudo-static approach. The current outcomes developed from a parametric study endorse a non-linear slope surface as the extreme profile, which is in accordance with the geomorphological aspect of slopes. The proposed methodology is compared with the finite element limit analysis to ensure credibility. Through the design charts obtained from the current investigation, the stability of slopes can be assessed under seismic conditions. It can be observed that the extreme slope profile demands a flat configuration to endure the condition of the limiting equilibrium at a higher level of seismicity. However, a concurrent enhancement in the shear strength of the slope medium suppresses this tendency by offering greater resistance to the seismic inertial forces induced in the medium. Unlike the traditional linear slopes, the extreme slope profiles mostly exhibit a steeper layout over a significant part of the slope height, thus ensuring a more optimized solution to the slope stability problem. Further, the susceptibility of the Longnan slope failure in the Huining-Wudu seismic belt is predicted using the current plasticity approach, which is found to be in close agreement with a case study reported in the literature. Finally, the concept of equivalent single or multi-tiered planar slopes is explored through an example problem, which exhibits the appropriateness of the proposed non-linear slope geometry under actual field conditions.
Keywords
earthquake; failure; numerical analyses; plasticity; slope stability;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Wasowski, J., Keefer, D.K. and Lee, C.T. (2011), "Toward the next generation of research on earthquake-induced landslides: current issues and future challenges", Eng. Geol., 122(1-2), 1-8. https://doi.org/10.1016/j.enggeo.2011.06.001.   DOI
2 Yang, X., Zhai, E., Wang, Y. and Hu, Z. (2018), "A comparative study of pseudo-static slope stability analysis using different design codes", Water Sci. Eng., 11(4), 310-317. https://doi.org/10.1016/j.wse.2018.12.003.   DOI
3 Yuan, R., Deng, Q., Cunningham, D., Han, Z., Zhang, D. and Zhang, B. (2016), "Newmark displacement model for landslides induced by the 2013 Ms 7.0 Lushan earthquake, China", Front. Earth Sci., 10(4), 740-750. https://doi.org/10.1007/s11707-015-0547-y.   DOI
4 Vahedifard, F., Shahrokhabadi, S. and Leshchinsky, D. (2016), "Optimal profile for concave slopes under static and seismic conditions", Can. Geotech. J., 53(9), 1522-1532. https://doi.org/10.1139/cgj-2016-0057.   DOI
5 Veiskarami, M., Eslami, A. and Kumar, J. (2011), "End-bearing capacity of driven piles in sand using the stress characteristics method: analysis and implementation", Can. Geotech. J., 48(10), 1570-1586. https://doi.org/10.1139/t11-057.   DOI
6 Zhou, X.P. and Cheng, H, (2014), "Stability analysis of threedimensional seismic landslides using the rigorous limit equilibrium method", Eng. Geol., 174, 87-102. https://doi.org/10.1016/j.enggeo.2014.03.009.   DOI
7 IS 1893 (2016), Criteria for earthquake resistant design of structures. Part 1: General provisions and buildings, Bureau of Indian Standards; New Delhi, India.
8 Jeldes, I.A., Drumm, E.C. and Yoder, D.C. (2015), "Design of stable concave slopes for reduced sediment delivery", J Geotech. Geoenviron. Eng., 141(2), 04014093-1-10. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001211.   DOI
9 Keshavarz, A. and Kumar, J. (2017), "Bearing capacity computation for a ring foundation using the stress characteristics method", Comput. Geotech., 89, 33-42. https://doi.org/10.1016/j.compgeo.2017.04.006.   DOI
10 Khosravi, M., Leshchinsky, D., Meehan, C.L. and Khosravi, A. (2013), "Stability analysis of seismically loaded slopes using finite element techniques", Proceedings of the Geo-Congress 2013: Stability and Performance of Slopes and Embankments, San Diego, California, March.
11 Kolathayar, S. and Ghosh, P. (2009), "Seismic active earth pressure on walls with bilinear backface using pseudo-dynamic approach", Comput. Geotech., 36(7), 1229-1236. https://doi.org/10.1016/j.compgeo.2009.05.015.   DOI
12 Krabbenhoft, K., Lyamin, A. and Krabbenhoft, J. (2015), Optum Computational Engineering (OptumG2). https://optumce.com
13 Cheng, Y.M., Li, L. and Chi, S.C. (2007), "Performance studies on six heuristic global optimization methods in the location of critical slip surface", Comput. Geotech., 34(6), 462-484. https://doi.org/10.1016/j.compgeo.2007.01.004.   DOI
14 Abe, K., Nakamura, S., Nakamura, H. and Shiomi, K. (2017), "Numerical study on dynamic behavior of slope models including weak layers from deformation to failure using material point method", Soils Found., 57(2), 155-175. https://doi.org/10.1016/j.sandf.2017.03.001.   DOI
15 Bishop, A.W. (1955), "The use of the slip circle in the stability analysis of slopes", Geotechnique, 5(1), 7-17. https://doi.org/10.1680/geot.1955.5.1.7.   DOI
16 Cheng, Y.M. and Au, S.K. (2005), "Solution of the bearing capacity problem by the slip line method", Can. Geotech. J., 42(4), 1232-1241. https://doi.org/10.1139/t05-037.   DOI
17 Choudhury, D., Basu, S. and Bray, J.D. (2007), "Behaviour of slopes under static and seismic conditions by limit equilibrium method", Proceedings of Geo-Denver 2007: New Peaks in Geotechnics, Denver, Colorado, February.
18 Cui, H., Ji, J., Song, J. and Huang, W. (2022), "Limit state linebased seismic stability charts for homogeneous earth slopes", Comput. Geotech., 146, 104749. https://doi.org/10.1016/j.compgeo.2022.104749.   DOI
19 Erzin, Y. and Cetin, T. (2014), "The prediction of the critical factor of safety of homogeneous finite slopes subjected to earthquake forces using neural networks and multiple regressions", Geomech. Eng., 6(1), 1-15. https://doi.org/10.12989/gae.2014.6.1.001.   DOI
20 Eurocode 8 (2004), Design of structures for earthquake resistance. Part 5: Foundations, retaining structures and geotechnical aspects, European Committee for Standardization; Brussels, Belgium.
21 Graham, J. (1968), "Plane plastic failure in cohesionless soils", Geotechnique, 18(3), 301-316. https://doi.org/10.1680/geot.1968.18.3.301.   DOI
22 Fellenius, W. (1936), "Calculation of the stability of earth dams", Proceedings of Transactions of the 2nd Congress on Large Dams, International Commission on Large Dams of the World Power Conference, Washington, DC, December.
23 Florkiewicz, A. and Kubzdela, A. (2013), "Factor of safety in limit analysis of slopes", Geomech. Eng., 5(5), 485-497. https://doi.org/10.12989/gae.2013.5.5.485.   DOI
24 Ghanbari, A., Khalilpasha, A., Sabermahani, M. and Heydari, B. (2013), "An analytical technique for estimation of seismic displacements in reinforced slopes based on horizontal slices method (HSM)", Geomech. Eng., 5(2), 143-164. https://doi.org/10.12989/gae.2013.5.2.143.   DOI
25 Gray, D.H. (2013), "Influence of slope morphology on the stability of earthen slopes", Proceedings of the Geo-Congress 2013: Stability and Performance of Slopes and Embankments, San Diego, California, March.
26 Greco, V.R. (2008), "Discussion of seismic active earth pressure behind a nonvertical retaining wall using pseudo-dynamic analysis", Can. Geotech. J., 45(12), 1795-1797. https://doi.org/10.1139/T08-099.   DOI
27 Griffiths, D.V. and Lane, P.A. (1999), "Slope stability analysis by finite elements", Geotechnique, 49(3), 387-403. https://doi.org/10.1680/geot.1999.49.3.387.   DOI
28 Hill, R. (1950), The Mathematical Theory of Plasticity, Oxford University Press, Oxford, UK.
29 Huang, C.C. (2019), "Experimental verification of seismic bearing capacity of near-slope footings using shaking table tests", J. Earthq. Eng., https://doi.org/10.1080/13632469.2019.1665148.   DOI
30 Kumar, J. and Ghosh, P. (2007), "Ultimate bearing capacity of two interfering rough strip footings", Int. J. Geomech., 7(1), 53-62. https://doi.org/10.1061/(ASCE)1532-3641(2007)7:1(53).   DOI
31 Lu, L., Wang, Z., Huang, X., Zheng, B. and Arai, K. (2014), "Dynamic and static combination analysis method of slope stability analysis during earthquake", Math. Probl. Eng., Article ID 573962. https://doi.org/10.1155/2014/573962.   DOI
32 Lee, M.G., Ha, J.G., Jo, S.B., Park, H.J. and Kim, D.S. (2017), "Assessment of horizontal seismic coefficient for gravity quay walls by centrifuge tests", Geotechnique Lett., 7(2), 211-217. https://doi.org/10.1680/jgele.17.00005.   DOI
33 Li, S., Shangguan, Z., Duan, H., Liu, Y. and Luan, M. (2009), "Searching for critical failure surface in slope stability analysis by using hybrid genetic algorithm", Geomech. Eng., 1(1), 85-96. https://doi.org/10.12989/gae.2009.1.1.085.   DOI
34 Li, X. (2007), "Finite element analysis of slope stability using a nonlinear failure criterion", Comput. Geotech., 34(3), 127-136. https://doi.org/10.1016/j.compgeo.2006.11.005.   DOI
35 Leshchinsky, D., Ebrahimi, S., Vahedifard, F. and Zhu, F. (2012), "Extension of Mononobe-Okabe approach to unstable slopes", Soils Found., 52(2), 239-256. https://doi.org/10.1016/j.sandf.2012.02.004.   DOI
36 Li, C., Jiang, P. and Zhou, A. (2019), "Rigorous solution of slope stability under seismic action", Comput. Geotech., 109, 99-107. https://doi.org/10.1016/j.compgeo.2019.01.018.   DOI
37 Majumdar, D.K. (1971), "Stability of soil slopes under horizontal earthquake force", Geotechnique, 21(1), 84-88. https://doi.org/10.1680/geot.1971.21.1.84.   DOI
38 Makdisi, F.I. and Seed, H.B. (1978), "Simplified procedure for estimating dam and embankment earthquake-induced deformations", J. Geotech. Eng. Div., 104(7), 849-867. https://doi.org/10.1061/AJGEB6.0000668.   DOI
39 Mononobe, N. and Matsuo, H. (1929), "On the determination of earth pressures during earthquakes", Proceedings of the World Engineering Conference, Tokyo.
40 Nandi, S., Santhoshkumar, G. and Ghosh, P. (2021a), "Determination of critical slope face in c-ϕ soil under seismic condition using method of stress characteristics", Int. J. Geomech., 21(4), 04021031-1-13. https://https://doi.org/10.1061/(ASCE)GM.1943-5622.0001976.   DOI
41 Nandi, S., Santhoshkumar, G. and Ghosh, P. (2021b), "Development of limiting soil slope profile under seismic condition using slip line theory", Acta Geotechnica, 16(11), 3517-3531. https://doi.org/10.1007/s11440-021-01251-4.   DOI
42 Nasiri, F., Javdanian, H. and Heidari, A. (2020), "Seismic response analysis of embankment dams under decomposed earthquakes", Geomech. Eng., 21(1), 35-51. https://doi.org/10.12989/gae.2020.21.1.035.   DOI
43 Newmark, N.M. (1965), "Effects of earthquakes on dams and embankments", Geotechnique, 15(2), 139-160. https://doi.org/10.1680/geot.1965.15.2.139.   DOI
44 Okabe, S. (1926), "General theory of earth pressures", J. Japan Soc. Civ. Eng., 12, 1277-1323.
45 Peng, M.X. and Chen, J. (2013), "Slip-line solution to active earth pressure on retaining walls", Geotechnique, 63(12), 1008-1019. https://doi.org/10.1680/geot.11.P.135.   DOI
46 Prisco, C.di., Pastor, M. and Pisano, F. (2012), "Shear wave propagation along infinite slopes: a theoretically based numerical study", Int. J. Numer. Anal. Meth. Geomech., 36(5), 619-642. https://doi.org/10.1002/nag.1020.   DOI
47 Qian. Z.H. and Zou, J.F. (2022), "Three-dimensional rigorous upper-bound limit analysis of soil slopes subjected to variable seismic excitations", Comput. Geotech., 147, 104714. https://doi.org/10.1016/j.compgeo.2022.104714.   DOI
48 Qin, C.-B. and Chian, S.C. (2018), "Kinematic analysis of seismic slope stability with a discretisation technique and pseudodynamic approach: a new perspective", Geotechnique, 68(6), 492-503. https://doi.org/10.1680/jgeot.16.P.200.   DOI
49 Sahoo, P.P. and Shukla, S.K. (2019), "Taylor's slope stability chart for combined effects of horizontal and vertical seismic coefficients", Geotechnique, 69(4), 344-354. https://doi.org/10.1680/jgeot.17.P.222.   DOI
50 Rieke-Zapp, D.H. and Nearing, M.A. (2005), "Slope shape effects on erosion: a laboratory study", Soil Sci. Soc. Am. J., 69(5), 1463-1471. https://doi.org/10.2136/sssaj2005.0015.   DOI
51 Sarkar, S. and Chakraborty, M. (2019), "Pseudostatic slope stability analysis in two-layered soil by using variational method", Proceedings of the 7th International Conference on Earthquake Geotechnical Engineering, Rome, Italy, June.
52 Sarma, S.K. (1973), "Stability analysis of embankments and slopes", Geotechnique, 23(3), 423-433. https://doi.org/10.1680/geot.1973.23.3.423.   DOI
53 Schor, H.J. and Gray, D.H. (2007), Landforming: An Environmental Approach to Hillside Development, Mine Reclamation and Watershed Restoration, Wiley, Hoboken, NJ.
54 Sokolovski, V.V. (1960), Statics of Soil Media, Butterworths Scientific Publications, London, UK.
55 Su, Z. and Shao, L. (2021), "A three-dimensional slope stability analysis method based on finite element method stress analysis", Eng. Geol., 280(105910), 1-12. https://doi.org/10.1016/j.enggeo.2020.105910.   DOI
56 Taylor, D.W. (1937), "Stability of earth slopes", J. Boston Soc. Civil Engineers, 24, 197-246.
57 Terzaghi, K. (1950), Mechanisms of Landslides, Geological Society of America, Berkeley Volume.
58 Terzi, N.U. and Selcuk, M.E. (2015), "Nonlinear dynamic behavior of Pamukcay earthfill dam", Geomech. Eng., 9(1), 83-100. https://doi.org/10.12989/gae.2015.9.1.083.   DOI
59 Utili, S. and Nova, R. (2007), "On the optimal profile of a slope", Soils Found., 47(4), 717-729. https://doi.org/10.3208/sandf.47.717.   DOI