• 제목/요약/키워드: earthquake-resistance

검색결과 382건 처리시간 0.022초

Improvement on Moment Resistance of a Concealed Timber Post Base Joint

  • Humbert, Jerome;Lee, Sang-Joon;Park, Joo-Saeng;Park, Moon-Jae
    • 한국가구학회지
    • /
    • 제24권4호
    • /
    • pp.444-451
    • /
    • 2013
  • In this paper, experimental results were presented on the moment resistance of a concealed timber post base joint aimed at replacing in a modern design introduced lately the wood to wood joints used in the traditional Korean timber house - Hanok. Preliminary results showed that the original configuration of the joint offers a limited moment resistance and a low ductility and energy dissipation. In an attempt to mitigate those limitations without undergoing major changes in the connector, three new configurations were proposed and investigated. Motivated by the wish to prevent the early failure in welds, a first approach consists in directly bolting the connector's upper plate to lower the stress on the weak welds. Alternatively, another approach focused on increasing the strength of these welds by extending their length to the full width of the metal wings. Finally, a third configuration investigated the effect of those two approaches combined. In conclusion, reinforcing the welds found out to be the best option among the presented ones. As a result, this connector considered to show proper ability for use in earthquake-resistant structures with suited lateral-resistant structural elements.

  • PDF

실지진하중의 액상화 발생특성에 기초한 액상화 상세평가법 (A New Detailed Assessment for Liquefaction Potential Based on the Liquefaction Driving Effect of the Real Earthquake Motion)

  • 최재순;강한수;김수일
    • 한국지반공학회논문집
    • /
    • 제20권5호
    • /
    • pp.145-159
    • /
    • 2004
  • 본 연구에서는 지진시 지반의 안정성 평가시, 진동시험에 기초하여 액상화 발생가능성 여부를 판정하는 상세평가법을 개발하였다. 개발된 평가법에서는 기존의 평가법이 지진을 단순히 정현하중화하는 등가전단응력개념에 기초한점과는 달리, 지진의 최대가속도, 유효지속시간, 지진형태, 그리고 지진규모 등 다양한 지진영향인자가 고려될 수 있도록 실지진기록 입력의 지반응답해석을 포함하도록 하였다. 지반의 고유한 저항특성을 응력-변형률 시험 결과로부터 액상화 전환시점까지의 누적 소성 전단변형률로 하였으며 이와 연계하여 지진의 액상화 발생특성을 지반응답해석을 통해 획득 가능한 전단변형률 시간이력곡선에 기초하도록 하였다. 이때, 액상화를 유발시키는 실지진기록의 특성분석을 위해 실지진하중 재하의 진동삼축시험을 수행하였다. 시험결과, 충격형 지진인 경우, 지진기록의 최대하중이 재하된 직후, 과잉간극수압이 급진적으로 발전하며 액상화가 발생하는 것으로 나타났으며 진동형 지진의 경우에는 최대하중이 재하된 경우, 눈에 띄는 과잉간극수압의 변화가 관찰되었으며 이후, 일정수준 이상의 큰 하중재하시 액상화가 발생하였다. 이로부터 액상화 발생에 가장 큰 영향인자는 최대하중인 것을 알 수 있었으며 진동형 지진형태의 경우, 일정수준 이상의 후속하중에 대한 고려가 필요함을 알 수 있었다. 이상의 결과로부터 본 평가법에서는 우선적으로 충격형 지진에 한하여 사용할 것을 제안하며 이때, 최대 전단변형률까지의 시간이력곡선으로부터 소성 전단변형률을 누적계산하여 이를 해당입력지진의 액상화 발생특성치로 정하였다. 기존의 등가응력개념에 기초한 상세평가법과의 비교를 통한 타당성 분석결과, 본 평가법은 기존의 상세평가법보다 유효응력경로 및 응력-변형률 상관곡선 등 실제적인 지반거동변화에 관한 진동시험결과에 기초하여 지반의 고유특성을 결정하고 지반응답해석을 통해 증폭현상을 포함한 지반 내 지진거동변화와 지진시간이력이 보유하고 있는 지진특성을 충분히 반영하고 있으므로 신뢰성 높은 액상화 상세평가가 가능할 것으로 판단된다.

전단벽의 연성도에 대한 단부보강 H형강 철물의 효과 (Experiment Study on Ductility of Composite Shear Walls)

  • 박홍근;오재은
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.53-58
    • /
    • 2001
  • Composite boundary elements with H steel sections could be used to enhance the strength and ductility of high-rise shear walls. The enhancement of earthquake resistance is expected to be achieved due to the inherent strength and ductility of the steel sections, and also due to the confinement effect to a core concrete. Experimental study were peformed for the compression zone of composite shear walls with multiple H sections at the boundaries. The effect of the steel sections on the overall behavior of the composite shear walls were investigated. Also, additional tests were conducted to investigate the contribution of H sections to the confinement of concrete.

  • PDF

손상된 벽식 아파트 구조의 내진성능평가 (Seismic Performance Evaluation of Damaged Apartment building)

  • 김동영;장극관;서대원;천영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.431-436
    • /
    • 2002
  • The purpose of this study is to evaluate resistance capacity of the damaged wall structural system against earthquake ground accelerations. Two lumped damage models(5 story, 12 story) are investigated by nonlinear time history analysis. As a result of analyses, the effect of stiffness degradation due to structural damages might change the interstorydrift of the structure. Therefore the increasing interstorydrift of damaged structures might be applied to evaluate the seismic performance of damaged structures.

  • PDF

조적식 교각의 내진해석 기법 개발 (Development of Seismic Analysis Technique for Masonry Structure)

  • 정용철;배준현;이준석;강영종
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 춘계학술대회 논문집
    • /
    • pp.171-176
    • /
    • 2002
  • There are many railway structures which were designed without conidering aseismic capacity. In special, masonry structures constructed long time ago should be reviewed about their resistance to earthquake. In this paper, technique to evaluate the capacity of masonry railway bridge is tried to develop by means of FEM analysis. In general FEM analysis program, 3-D solid element is used for masonry structures and response spectrum analysis procedure is tried. In addition, 3-D solid element has material properties equivalent to mortar-brick composite body. Used FEM program is ABAQUS-CAE.

  • PDF

슬래브-기둥 접합부의 내진성능을 위한 래티스 전단보강 (Lattice Shear Reinforcement for Earthquake-Resistance of Slab-Column Connection.)

  • 김유니;박홍근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.26-29
    • /
    • 2006
  • A flat plate-column connection is susceptible to brittle punching shear failure, which may result in the necessity of shear reinforcement. In present study, experimental tests were performed to study the capacity of slab-column connections strengthened with lattice, stud rail, shear band and stirrup under gravity and cyclic lateral load. Among them, the capacity of the specimens with lattice are superior to the others due to the truss action of the lattice bars and dowel action of the longitudinal bars as well as the shear resistance of the web re-bar. On the other hand, the strengths of the specimens with stud rail, shear band and stirrup are lower than the estimated strength by the ACI, therefore design formulas of the ACI are needed to revise.

  • PDF

교량케이슨기초의 최적신뢰성 설계 규준 (Optimum Reliablity Based Design Criteria for Bridge Cassion Foundation)

  • 손용우;신형우;이증빈;정철원
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1992년도 가을 학술발표회 논문집
    • /
    • pp.79-89
    • /
    • 1992
  • This study is directed to propose a stability analysis and Design Criteria for Bridge Caisson foundations, with Could possibly replace the traditionals W.S.D. provisions of the Current Code, based on the FBOR(Load Factors based on optimum Reliability). The optimum reliability indices(Vertical bearing Capacity : $\beta$opt : 3.19, Lateral bearing Capacity : $\beta$opt= 3.15(ordinary), $\beta$opt : 2.93 (earthquake), Shearing resistance Capacity ; $\beta$opt : 2.87) are Selected as optimal Values Considering our practice base on the Calibration with the current Bridge Caisson foundation design Safety provisions, Load and resistance factors are measure by Using the proposed uncertainties and the Selected optimum reliability indices. furthermore, a set of nominal safety factors are proposed for the U.S.D. design provisions.

  • PDF

LRB 교좌장치를 사용한 교량의 장대레일 축력안정성 평가 (Stability evaluation of CWR on the bridge with lead Rubber Bearing(LRB))

  • 양신추;윤철균;이진우
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.787-792
    • /
    • 2004
  • LRB(Lead rubber bearing) has small resistance force against slowly acting loadings such as temporal and creep loadings vice versa large resistance force against rapid loadings such as earthquake and braking loadings. By those mechanical characteristics, it has the advantage to reduce longitudinal load acting on abutments and piers, and moreover to in1prove the running stability of train by restricting the behavior of bridge under the required level. In this study, a stability evaluation method of CWR on the bridge with LRB is presented. Several parametric studies are carried to investigate how LRB contributes to the improvement of CWR stability.

  • PDF

풍화 화연토와 loess의 붕괴특성 비교 (The Comparison of Collapsible Characteristics on Decomposed Granite Soil and Loess)

  • 도덕현
    • 한국지반공학회지:지반
    • /
    • 제2권1호
    • /
    • pp.7-14
    • /
    • 1986
  • The structure of the collapsible soils, such as decomposed granite soil and loess, were examined by the odeometer test, SEM & XES analysis and static & cyclic triaxial test, and hove this structure have influences upon the collapsible behaviour under static and cyclic load was investigated. The study results obtained are as follows; 1. The macropores space of decomposed granite soil (rd=1.50g/cm3) and loess (rd=1.43g/cm3) used in this test were well developed, and showed the behaviour of collapsible soil. 2. Collapsible soil has high resistance on the strain under natural moisture content, however, the resistance on the strain was sharply decreased by the absorption and increasing load since its special structure was destructed. 3. Under the static load, the strain of collapsible soil was high by the viscous flow of the cyclic bonds with time lapse, but Infer the cyclic load, the strain of collapsible soil was low since the tinge needed to destruct the bonding force of clay was not enough. 4. The understanding about the cyclic behaviour of collapsible soil may be helpful to predict the elastic & residual strain of the foundations by the earthquake together with the damage by the additional failure.

  • PDF