• 제목/요약/키워드: earthquake resistant design

검색결과 222건 처리시간 0.024초

가새를 사용한 기존 학교건축물의 내진보강 및 내진성능평가 (Seismic Retrofit and Seismic Performance Evaluation of Existing School Structures Using diagonal, x-shaped, chevron Braces)

  • 김동건
    • 한국디지털건축인테리어학회논문집
    • /
    • 제11권2호
    • /
    • pp.115-121
    • /
    • 2011
  • Occurrence of earthquakes have been increased all over the world and also, magnitude of earthquakes have been larger these days. Earthquake can be happened in Korea and is not a safe country any more. Many buildings are exposed at danger without any alternatives against earthquake in Korea. Among various kinds of buildings, school buildings are very important and urgent, because many students stays at school and young students have some difficulty to evacuate. Also, most existing school buildings in Korea were not designed considering earthquake resistant design codes. Thus, in this study, 3 types of braces were applied for seismic retrofits of existing school buildings using commercial structural analysis software and effective seismic retrofits were evaluated and discussed based on results by time history analysis.

케이블과 도르래를 이용한 변위증폭형 감쇠시스템의 실험적 성능평가 (Experimental Performance Evaluation of Displacement Amplification Damping Systems Using Cables and Pulleys)

  • 오진탁;정인용;류재호
    • 한국지진공학회논문집
    • /
    • 제24권3호
    • /
    • pp.149-156
    • /
    • 2020
  • The vibration control device such as the damper can be used to reinforce the seismic performance of structures. The damper is activated by the deformation of structures during earthquake; however, the deformation of structures is extremely small, causing difficulty in using the damper. Therefore, there is a need for a method capable of amplifying small deformities and transmitting them to the damper. The purpose of this paper is to develop and evaluate a displacement amplification seismic system using cable-pulley. The appropriate cable was selected through a cable tensile performance test and the results of the frame experiment were compared with theoretical displacement amplification ratio values. As a result, it may be said that the proposed system using cable-pulley is useful for displacement amplification.

복합댐의 지진계수별 민감도 분석 (Senstivity analysis by seismograph of composition Dam)

  • 김재홍;오병현;홍원표;전제성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.820-826
    • /
    • 2008
  • Differ number of seismograph to the composition dam by recently frequent earthquake and analyzed responsiveness. Interest for dam inner place by increase of something wrong flood and inside and outside of the country earthquake appearance according to unusual change of weather is risen, on important urea in dam safety floodgate school register by structural safety divide can. Therefore, by PMP (PMF) of dam and increase of domestic earthquake occurrence, need research about earthquake resistant nature ability estimation of water resources facilities. Because responsiveness analysis applies number 0.154 ~ 0.25 g of seismograph, seismic wave that use in analysis is being suitable in dynamic analysis of construction such as Rockfill dam from representative chapter cycle faction and recommend in domestic internal examination design workbook, and use results applied much Hachinohe wave onions in van abroad.

  • PDF

Seismic fragility analysis of base isolation reinforced concrete structure building considering performance - a case study for Indonesia

  • Faiz Sulthan;Matsutaro Seki
    • Structural Monitoring and Maintenance
    • /
    • 제10권3호
    • /
    • pp.243-260
    • /
    • 2023
  • Indonesia has had seismic codes for earthquake-resistant structures designs since 1970 and has been updated five times to the latest in 2019. In updating the Indonesian seismic codes, seismic hazard maps for design also update, and there are changes to the Peak Ground Acceleration (PGA). Indonesian seismic design uses the concept of building performance levels consisting of Immediate occupancy (IO), Life Safety (LS), and Collapse Prevention (CP). Related to this performance level, cases still found that buildings were damaged more than their performance targets after the earthquake. Based on the above issues, this study aims to analyze the performance of base isolation design on existing target buildings and analyze the seismic fragility for a case study in Indonesia. The target building is a prototype design 8-story medium-rise residential building using the reinforced concrete moment frame structure. Seismic fragility analysis uses Incremental Dynamic Analysis (IDA) with Nonlinear Time History Analysis (NLTHA) and eleven selected ground motions based on soil classification, magnitude, fault distance, and earthquake source mechanism. The comparison result of IDA shows a trend of significant performance improvement, with the same performance level target and risk category, the base isolation structure can be used at 1.46-3.20 times higher PGA than the fixed base structure. Then the fragility analysis results show that the fixed base structure has a safety margin of 30% and a base isolation structure of 62.5% from the PGA design. This result is useful for assessing existing buildings or considering a new building's performance.

Estimation of seismic effective energy based parameter

  • Nemutlu, Omer Faruk;Sari, Ali;Balun, Bilal
    • Structural Engineering and Mechanics
    • /
    • 제82권6호
    • /
    • pp.785-799
    • /
    • 2022
  • The effect of earthquakes in earthquake resistant structure design stages is influenced by the highest ground acceleration value, which is generally a strength-based approach in seismic codes. In this context, an energy-oriented approach can be suggested as an alternative to evaluate structure demands. Contrary to the strength-based approach, the strength and displacement demands of the structure cannot be evaluated separately, but can be evaluated together. In addition, in the energy-oriented approach, not only the maximum effects of earthquakes are taken into account, but also the duration of the earthquake. In this respect, it can be said that the use of energy-oriented earthquake parameters is a more rational approach besides being an alternative. In this study, strength and energy-oriented approaches of earthquake parameters of 11 different periods of single degree of freedom systems were evaluated over 28 different earthquake situations. The energy spectra intended to be an alternative to the traditional acceleration spectra were created using the acceleration parameter equivalent to the input energy. Two new energy parameters, which take into account the effective duration of the earthquake, are proposed, and the relationship between the strength-oriented spectral acceleration parameters and the energy parameters used in the literature is examined by correlation study. According to the results obtained, it has been seen that energy oriented earthquake parameters, which give close values in similar period situations, will be a good alternative to strength oriented earthquake parameters. It was observed that the energy parameters were affected by the effective duration of the earthquake, unlike the strength-based parameters. It has been revealed that the newly proposed energy parameters considering the effective duration give good correlations. Finally, it was concluded that the energy parameters can be used in the design, and the newly proposed effective energy parameters can shorten the analysis durations.

내부 보-기둥 접합부의 전단파괴 (Joint Shear Failure of Reinforced Concrete Interior Beam-Column Joint)

  • 이민섭;홍성걸
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.303-308
    • /
    • 2000
  • The design of column joint is an important part of earthquake resistant design of reinforced concrete moment resisting frames. Beam column joints must provide sufficient stiffness and strength to resist and sustain the loads induced by adjacent beams and columns. This paper investigates the difference of the current design codes which provide a different approach for the design of beam column joint in seismic zone. The model provided by Hitoshi Shiohara(1998) is reviewed in this paper, which provides a good relationship between moment and shear action of interior beam column joint and a role shear reinforcement according to their position.

  • PDF

Earthquake loss assessment framework of ductile RC frame using component- performance -based methodology

  • Shengfang Qiao;Xiaolei Han;Hesong Hu;Mengxiong Tang
    • Structural Engineering and Mechanics
    • /
    • 제91권4호
    • /
    • pp.369-382
    • /
    • 2024
  • The earthquake loss assessment framework of ductile reinforced concrete (or RC) frame using component-performance -based methodology was studied in this paper. The elasto-plastic rotation angle was used as the damage indicator of structural component, and the damage-to-loss model was proposed on the basis of the deformation indicator of structural component. Dynamic instability during incremental dynamic analysis was taken as collapse criterion, and column failure was taken as criterion that structure has to be demolished. Expected earthquake losses of low-rise, mid-rise and high-rise RC frames were discussed. The expected earthquake loss encompassed collapse loss, demolition loss and repair loss. Furthermore, component groups of RC frame were divided into structural components, nonstructural components and rugged components. The results indicate that ductile RC frame is more likely to be demolished than collapse, especially in low-rise and mid-rise RC frames. Furthermore, the less collapse margin ratio the structure has, the more demolition probability the structure will suffer under rare earthquake. The demolition share of total earthquake loss might be more prominent than repair share and collapse share in ductile RC frame.

기상청 지진 자료를 이용한 내진설계 지진규모의 신뢰구간 추정 (Confidence Interval Estimation of the Earthquake Magnitude for Seismic Design using the KMA Earthquake Data)

  • 조홍연;이기섭
    • 한국해안·해양공학회논문집
    • /
    • 제29권1호
    • /
    • pp.62-66
    • /
    • 2017
  • 최근 발생한 기록적인 5.8 규모의 경주지진으로 한반도에서 발생 가능한 지진규모에 대한 관심과 해안구조물에 대한 내진 설계검토에 대한 요구가 고조되고 있다. 본 연구에서는 기상청에서 제공하는 지진규모 자료(규모 3.5, 4.0 이상의 자료)를 이용하여 비모수적인 극치해석 기법을 이용하여 재현기간에 따른 지진규모와 신뢰구간을 추정하였다. 지진규모 4.0 이상의 자료를 이용하여 추정한 결과, 재현기간 50, 100년에 해당하는 지진규모는 각각 5.81, 5.94, 추정 지진규모의 90% 신뢰구간은 각각 5.52-6.11, 5.62-6.29 범위로 추정되었다. 본 연구에서 추정한 지진규모는 공간적인 지진위험 영향을 반영하지 못하는 한계가 있으나, 한반도에서 발생 가능한 지진규모를 극치해석과 가용한 자료의 한정된 기간을 반영하여 신뢰구간을 추정하였기 때문에 다양한 연안 구조물의 설계 관점에서 활용이 가능하다.

A novel longitudinal seismic self-centering system for RC continuous bridges using SMA rebars and friction dampers

  • Xiang, Nailiang;Jian, Nanyi;Nonaka, Tetsuya
    • Structural Engineering and Mechanics
    • /
    • 제82권4호
    • /
    • pp.435-444
    • /
    • 2022
  • This study proposes a novel longitudinal self-centering earthquake resistant system for reinforced concrete (RC) continuous bridges by using superelastic shape memory alloy (SMA) reinforcement and friction dissipation mechanism. The SMA reinforcing bars are implemented in the fixed piers to provide self-recentering forces, while the friction dampers are used at the movable substructures like end abutments to enhance the energy dissipation of the bridge system. A reasonable balance between self-centering and energy dissipation capacities should be well achieved by properly selecting the parameters of the SMA rebars and friction dampers. A two-span continuous bridge with one fixed pier and two abutments is chosen as a prototype for illustration. Different longitudinal earthquake resistant systems including the proposed one in this study are investigated and compared. The results indicate that compared with the designs of over-dissipation (e.g., excessive friction) and over-self-centering (e.g., pure SMAs), the proposed system with balanced design between self-centering and energy dissipation would perform satisfactorily in controlling both the peak and residual displacement ratios of the bridge system.

Fragility assessment of RC-MRFs under concurrent vertical-horizontal seismic action effects

  • Farsangi, Ehsan Noroozinejad;Tasnimi, Abbas Ali;Mansouri, Babak
    • Computers and Concrete
    • /
    • 제16권1호
    • /
    • pp.99-123
    • /
    • 2015
  • In this study, structural vulnerability of reinforced concrete moment resisting frames (RC-MRFs) by considering the Iran-specific characteristics is investigated to manage the earthquake risk in terms of multicomponent seismic excitations. Low and medium rise RC-MRFs, which constitute approximately 80-90% of the total buildings stock in Iran, are focused in this fragility-based assessment. The seismic design of 3-12 story RC-MRFs are carried out according to the Iranian Code of Practice for Seismic Resistant Design of Buildings (Standard No. 2800), and the analytical models are formed accordingly in open source nonlinear platforms. Frame structures are categorized in three subclasses according to the specific characteristics of construction practice and the observed seismic performance after major earthquakes in Iran. Both far and near fields' ground motions have been considered in the fragility estimation. An optimal intensity measure (IM) called Sa, avg and beta probability distribution were used to obtain reliable fragility-based database for earthquake damage and loss estimation of RC buildings stock in urban areas of Iran. Nonlinear incremental dynamic analyses by means of lumped-parameter based structural models have been simulated and performed to extract the fragility curves. Approximate confidence bounds are developed to represent the epistemic uncertainties inherent in the fragility estimations. Consequently, it's shown that including vertical ground motion in the analysis is highly recommended for reliable seismic assessment of RC buildings.