• 제목/요약/키워드: earthquake forces

검색결과 402건 처리시간 0.022초

Transverse earthquake-induced forces in continuous bridges

  • Armouti, Nazzal S.
    • Structural Engineering and Mechanics
    • /
    • 제14권6호
    • /
    • pp.733-738
    • /
    • 2002
  • A simplified rational method is developed to evaluate transverse earthquake-induced forces in continuous bridges. This method models the bridge as a beam on elastic foundation, and assumes a sinusoidal curve for both vibration mode shape and deflected shape in the transverse direction. The principle of minimum total potential is used to calculate the displacements and the earthquake-induced forces in the transverse direction. This method is concise and easy to apply, and hence, offers an attractive alternative to a lengthy and time consuming three dimensional modeling of the bridge as given by AASHTO under its Single Mode Spectral Analysis Method.

Investigation of earthquake angle effect on the seismic performance of steel bridges

  • Altunisik, Ahmet C.;Kalkan, Ebru
    • Steel and Composite Structures
    • /
    • 제22권4호
    • /
    • pp.855-874
    • /
    • 2016
  • In this paper, it is aimed to evaluate the earthquake angle influence on the seismic performance of steel highway bridges. Upper-deck steel highway bridge, which has arch type load bearing system with a total length of 216 m, has been selected as an application and analyzed using finite element methods. The bridge is subjected to 1992 Erzincan earthquake ground motion components in nineteen directions whose values range between 0 to 90 degrees, with an increment of 5 degrees. The seismic weight is calculated using full dead load plus 30% of live load. The variation of maximum displacements in each directions and internal forces such as axial forces, shear forces and bending moments for bridge arch and deck are attained to determine the earthquake angle influence on the seismic performance. The results show that angle of seismic input motion considerably influences the response of the bridge. It is seen that maximum arch displacements are obtained at X, Y and Z direction for $0^{\circ}$, $65^{\circ}$ and $5^{\circ}$, respectively. The results are changed considerably with the different earthquake angle. The maximum differences are calculated as 57.06%, 114.4% and 55.71% for X, Y and Z directions, respectively. The maximum axial forces, shear forces and bending moments are obtained for bridge arch at $90^{\circ}$, $5^{\circ}$ and $0^{\circ}$, respectively. The maximum differences are calculated as 49.12%, 37.37% and 51.50%, respectively. The maximum shear forces and bending moments are obtained for bridge deck at $0^{\circ}$. The maximum differences are calculated as 49.67%, and 49.15%, respectively. It is seen from the study that the variation of earthquake angle effect the structural performance of highway bridges considerably. But, there is not any specific earthquake angle of incidence for each structures or members which increases the value of internal forces of all structural members together. Each member gets its maximum value of in a specific angle of incidence.

면진장치를 적용한 컴퓨터실 바닥의 지진응답해석 (Seismic Response Analysis of Computer Floors Using Base Isolation System)

  • 이경진
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.424-431
    • /
    • 2000
  • After the Kobe earthquake(1995) in Japan, the Izmit earthquake(1997) in Turkey and the Chi-chi earthquake(1999) in Taiwan, the small-to-medium-sized earthquakes occurred in the Koreans peninsula and this shows the fact that Korea is not located in the safety zone of earthquake. The main concept of base isolation system is to reduce the member forces by decreasing the earthquake forces transmitted to superstructure instead of the conventional techniques of strengthening the structural members. This study investigates the effect of seismic response attenuation of computer floors using base isolation systems

  • PDF

Influence of infill walls on modal expansion of distribution of effective earthquake forces in RC frame structures

  • Ucar, Taner
    • Earthquakes and Structures
    • /
    • 제18권4호
    • /
    • pp.437-449
    • /
    • 2020
  • It is quite apparent that engineering concerns related to the influence of masonry infills on seismic behavior of reinforced concrete (RC) structures is likely to remain relevant in the long term, as infill walls maintain their functionalities in construction practice. Within this framework, the present paper mainly deals with the issue in terms of modal expansion of effective earthquake forces and the resultant modal responses. An adequate determination of spatial distribution of effective earthquake forces over the height of the building is highly essential for both seismic analysis and design. The possible influence of infill walls is investigated by means of modal analyses of two-, three-, and four-bay RC frames with a number of stories ranging from 3 to 8. Both uniformly and non-uniformly infilled frames are considered in numerical analyses, where infill walls are simulated by adopting the model of equivalent compression strut. Consequently, spatial distribution of effective earthquake forces, modal static base shear force response of frames, modal responses of story shears from external excitation vector and lateral floor displacements are obtained. It is found that, infill walls and their arrangement over the height of the frame structure affect the spatial distribution of modal inertia forces, as well as the considered response quantities. Moreover, the amount of influence varies in stories, but is not very dependent to bay number of frames.

일정 및 변동 축력을 받는 철근콘크리트 기둥의 내진성능 평가 (Seismic Performance Evaluation of Reinforced Concrete Columns Under Constant and Varying Axial Forces)

  • 이도형
    • 한국지진공학회논문집
    • /
    • 제28권1호
    • /
    • pp.59-65
    • /
    • 2024
  • This paper describes the seismic performance evaluation of reinforced concrete bridge columns under constant and varying axial forces. For this purpose, nine identical circular reinforced concrete columns were designed seismically by KIBSE (2021) and KCI (2021). A comparison of lateral forces with theoretical strength shows that the safety factor for columns under varying axial forces is less marginal than those under constant axial forces. In addition, columns under varying axial forces exhibit significant fluctuations in the hysteretic response due to continuously varying axial forces. This is particularly prominent when many varying axial force cycles within a specific lateral loading cycle increase. Moreover, the displacement ductility of columns under varying axial forces does not meet the code-specified required ductility in the range of varying axial forces. All varying axial forces affect columns' strength, stiffness, and displacement ductility. Therefore, axial force variation needs to be considered in the lateral strength evaluation of reinforced concrete bridge columns.

파랑하중 및 지진하중을 받는 해양케이블의 동적 비선형 해석 (Dynamic Nonlinear Analysis of Marine Cables Under Wave Force and Earthquake Force)

  • 김문영
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.292-299
    • /
    • 1999
  • In order to investigate dynamic behaviors of marine cables under wave and earthquake forces a geometric nonlinear. F, E formulation of marine cables is presented and tangent stiffness and mass matrices for the isoparametric cable element are derived, The initial equilibrium state of cables subjected to self -weights and current forces is determined and free vibration and dynamic nonlinear analysis of cable structures under additional environmental loads are performed based on the initial configuration Challenging examples are presented and discussed in order to demonstrate the feasibility of the present finite element method and investigate dynamic nonlinear behaviors of marine cables.

  • PDF

능동제에 구조물의 지진에너지 응답 (Earthquake Energy Response of Actively-controlled Structures)

  • 민경원
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.399-408
    • /
    • 2000
  • IN analyzing earthquake response of structures important focus is on their diaplacements and shear forces. However seismic technology of passive energy dissipation makes focus on the seismic energy distribution of structures. The passive dampers enhance the capability of energy dissipation by their hysteretic behavior thus preventing the structural plastic deformation. In this paper the building structure with an active controller is analyzed with the view of earthquake energy distribution under elastic and plastic behaviors. The active control makes an effect of increasing damping capability which absorbs most of the earthquake input energy. Finally the different active gains resulting from the plastic deformation are applied to the active analysis and control forces and earthquake energy response are compared.

  • PDF

현행 내진설계 규준에서 요구되는 수평강도의 평가 방법 (Method of Evaluation of the Strength Required in Current Seismic Design Code)

  • 한상환
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1997년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 1997
    • /
    • pp.193-200
    • /
    • 1997
  • Current seismic design code is based of the assumption that the designed structures would be behaved inelastically during a severe earthquake ground motion. For this reason, seismic design forces calculated by seismic codes are much lower than the forces generated by design earthquakes which makes structures responding elastically. Present procedures for calculating seismic design forces are based on the use of elastic spectra reduced by a strength reduction factors known as "response modificaion factor". Because these factors were determined empirically, it is difficult to know how much inelastic behaviors of the structures exhibit. In this study, base shear forces required to maintain target ductility ratio were first calculated from nonlinear dynamic analysis on the single degree of freedom system. And then, base shear foeces specified in seismic design code compare with above results. If the strength(base shear) required strength should be filled by overstrength and/or redundancy. Therefore, overstrength of moment resisting frame structure will be estimated from the results of static nonlinear analysis(push-over analysis).analysis).

  • PDF

면진용 교좌장치의 거동 특성과 내진 성능 비교 (Comparisons of Behavioral Characteristics and Seismic Performance of Seismic Isolation Bearing Systems)

  • 한규승;한경봉;박선규
    • 콘크리트학회논문집
    • /
    • 제12권4호
    • /
    • pp.79-89
    • /
    • 2000
  • In this paper, the seismic analysis and the modeling techniques have been introduced for aseismic performances assessment, when seismic isolation bearings are applied on a real bridge. Nonlinear time-history analysis is carried out using finite element analysis program. In this study, EI Centro earthquake(1940, N00W), Mexico earthquake(1985, N90W), and earthquake simulation from modified SIMQKE are used as earthquake ground excitations. The seismic response of seismically isolated bridge is compared with that of a bridge using conventional Pot Bearings, after obtaining the displacements of the deck, the deformations of the piers, shear forces and moments of the bottoms of the piers. The analytical analysis results show that seismic isolation bearing, especially seismic isolation bearings with sliding mechanism, could reduce earthquake forces.

설계부재력에 대한 지진하중의 방향 및 직교성 영향 (Directional and Orthogonal Effects of Seismic Loads on Design Member Forces)

  • 고동우;정성욱;이한선
    • 한국지진공학회논문집
    • /
    • 제9권3호
    • /
    • pp.51-58
    • /
    • 2005
  • 최근 우리나라에서는 건축적 또는 사회적 요구로 비정형 고층 RC건물이 급증하고 있으나, 이와 같은 건물을 내진설계하는데 요구되는 지진의 방향성과 직교성을 적응하기 위한 구체적인 방법이 제시되어 있지 않아 설계자들이 설계하는데 어려움이 있다. 따라서, 본 논문에서는 우리나라에서 실제 건설된 비정형고층 RC건물을 스펙트럼해석법과 시간이력해석법에 따라 SAP2000을 사용하여 동적해석을 수행한 후, 하부골조 기둥의 설계력을 비교함으로써 주축의 설정과 지진의 방향성을 고려하는 것이 설계력에 미치는 영향, 그리고 방향성과 직교성을 모두 만족시킬 수 있는 방법에 대해 연구하였다. 연구결과 내린 결론은 다음과 같다. 1) 지진에 직각방향 전단력이 발생하지 않는 방향을 주축으로 정의하여 설계부재력을 구하면, 동적밑면전단력 보정계수가 감소하기 때문에 X, Y축을 주축으로 정하여 설계부재력 구하였을 때보다 설계부재력이 $15\%$정도 작은 값을 보여주었다. 2) 100/30법에 따라 방향성을 고려하여 구한 설계부재력은 2방향 시간이력해석결과로부터 구한 최대설계부재력보다 큰 값을 보여주어 100/30법에 따라 직교성을 고려하는 방법은 타당한 것으로 나타났으나, 시간이력해석결과에서 부재력을 나타내는 벡터$(P,\;M_y,\;and\;M_z)$ 많은 부분이 100/30법에 따라 예측한 설계부재력의 영역을 벗어났다.