• 제목/요약/키워드: earthquake force

검색결과 690건 처리시간 0.024초

Passive, semi-active, and active tuned-liquid-column dampers

  • Chen, Yung-Hsiang;Ding, Ying-Jan
    • Structural Engineering and Mechanics
    • /
    • 제30권1호
    • /
    • pp.1-20
    • /
    • 2008
  • The dynamic characteristics of the passive, semi-active, and active tuned-liquidcolumn dampers (or TLCDs) are studied in this paper. The design of the latter two are based on the first one. A water-head difference (or simply named as water head in this paper) of a passive TLCD is pre-set to form the so-called semi-active one in this paper. The pre-set of water head is released at a proper time instant during an earthquake excitation in order to enhance the vibration reduction of a structure. Two propellers are installed along a shaft inside and at the center of a passive TLCD to form an active one. These two propellers are driven by a servo-motor controlled by a computer to provide the control force. The seismic responses of a five-story shear building with a passive, semiactive, and active TLCDs are computed for demonstration and discussion. The responses of this building with a tuned mass damper (or TMD) are also included for comparison. The small-scale shaking-table experiments of a pendulum-like system with a passive or active TLCD to harmonic and seismic excitations are conducted for verification.

사장교의 설계를 위한 최적 지지조건 결정 (Determination of Optimal Support for Cable-stayed Bridge Designs)

  • 안주옥;윤영만
    • 한국방재학회 논문집
    • /
    • 제3권4호
    • /
    • pp.103-109
    • /
    • 2003
  • 사장교 설계에서 최적의 지지조건을 결정하기 위해 사장교 전체구조계의 교축방향에 대해서 주형의 지지조건에 따른 활하중, 풍하중과 지진하중에 의한 주형, 주탑단면력 및 케이블력의 변화를 3차원 수치해석을 통해 검토하였다. 교축방향의 적합한 경계조건 도입은 주형의 지지점과 주탑의 기초부의 반력뿐만 아니라 주형의 휨모멘트에서 많은 변화를 유도할 수 있다. 본 수치해석의 예에서, 종방향 탄성계수값은 활하중이 작용 할 경우는 약 100tonf/m/bearing, 지진하중이 작용 할 경우는 약 100tonf/m/bearing 에서 최적의 지지조건임을 알 수 있다. 즉 본 해석대상 교량에서 종방향 탄성계수값이 $100{\sim}1000tonf/m/bearing$ 일 경우의 지지조건에서 최적의 지지조건을 얻었으며, 이 조건에서 주탑의 단면력을 합리적으로 결정할 수 있음을 알 수 있다.

선형구조해석을 통한 노후된 학교시설 내진성능평가 (Seismic Performance Evaluation of An Old School Building Through Linear Analysis)

  • 이도형;김태완;김승래;추유림;김현식
    • 산업기술연구
    • /
    • 제38권1호
    • /
    • pp.21-27
    • /
    • 2018
  • In January 2018, the Ministry of Education published "Seismic design criteria for school buildings" and "Manual for seismic performance evaluation and retrofit of school buildings" to evaluate seismic performances through linear analysis. This paper evaluates the seismic performance of an old school building through the linear analysis. The target building was constructed in the late 1970s, and the seismic-force-resisting system was assumed to be a reinforced concrete moment frame with an un-reinforced masonry wall. As a result of the evaluation, the target building does not satisfy the 'life safety' level of 1.2 times the design spectrum. The average strength ratio of moment frames, an indicator of the level of seismic performance tends to be controlled by beams. However, through the Pohang earthquake, it was known that the short column effect caused by the partially infilled masonry wall caused shear failure of the columns in school buildings. Therefore, it is necessary to improve the linear analysis so that the column controls the average strength ratio of moment frames.

Performance of multiple tuned mass dampers-inerters for structures under harmonic ground acceleration

  • Cao, Liyuan;Li, Chunxiang;Chen, Xu
    • Smart Structures and Systems
    • /
    • 제26권1호
    • /
    • pp.49-61
    • /
    • 2020
  • This paper proposes a novel high performance vibration control device, multiple tuned mass dampers-inerters (MTMDI), to suppress the oscillatory motions of structures. The MTMDI, similar to the MTMD, involves multiple tuned mass damper-inerter (TMDI) units. In order to reveal the basic performance of the MTMDI, it is installed on a single degree-of-freedom (SDOF) structure excited by the ground acceleration, and the dynamic magnification factors (DMF) of the structure-MTMDI system are formulated. The optimization criterion is determined as the minimization of maximum values of the relative displacement's DMF for the controlled structure. Based on the particle swarm optimization (PSO) algorithm to tune the optimum parameters of the MTMDI, its performance has been investigated and evaluated in terms of control effectiveness, strokes, stiffness and damping coefficient, inerter element force, and robustness in frequency domain. Meanwhile, further comparison between the MTMDI with MTMD has been conducted. Numerical results clearly demonstrate the MTMDI outperforms the MTMD in control effectiveness and strokes of mass blocks. Additionally, in the aspects of frequency perturbations on both earthquake excitations and structures, the robustness of the MTMDI is also better than the MTMD.

비선형 구조물에 대한 수정 슬라이딩모드 제어알고리즘 성능 평가 (ExperimPerformance Evaluation of Modified Sliding Mode Control Algorithm for Nonlinear Structures)

  • 이상현
    • 한국전산구조공학회논문집
    • /
    • 제20권2호
    • /
    • pp.147-155
    • /
    • 2007
  • 본 논문에서는 수정 슬라이딩 모드제어기의 비선형 이력구조물의 지진응답 제어성능이 평가되었다. 수정 슬라이딩모드 제어는 제어력을 계산하기 위해 Lyapunov함수의 목표변화율을 이용하는 기법으로 기존 연구에서는 선형구조물에 대한 성능만이 조사되었다. 그러나 강진시 대부분의 구조물은 비선형 거동을 보인다는 점을 고려할 때 기존 연구의 결과는 실제 적용에 있어 제한점을 가지고 있다. Bouc-Wen 모델을 사용하여 구조물의 비선형 거동을 모델링 하였으며, 이력이선형 단자유도 구조물에 대한 통계해석과 비선형이력 면진구조물에 대한 해석결과는 제안된 수정 슬라이딩모드 제어알고리즘이 기존의 슬라이딩모드 제어기보다 우수한 성능을 가짐을 보여준다.

Structural Design and Construction for Tall Damped Building with Irregularly-Shaped Plan and Elevation

  • Yamashita, Yasuhiko;Kushima, Soichiro;Okuno, Yuuichirou;Morishita, Taisei
    • 국제초고층학회논문집
    • /
    • 제7권3호
    • /
    • pp.255-264
    • /
    • 2018
  • This paper introduces three distinctive means for the use of a 189-meter high damped structure ensuring safety against earthquake: 1. Realization of L-shaped elevational structural planning: The bottom and top of the tower have belt trusses and hat trusses respectively to restrain the bending deformation. Furthermore, large-capacity oil dampers (damping force 6,000 kN) are installed in the middle part of the tower to restrain the higher-mode deformation. 2. Realization of L-shaped planar structural planning: We devised a means of matching the centers of gravity and rigidity by adjusting planar rigidity. Moreover, viscous damping devices are located at the edges of the L-shaped plan, where torsional deformation tends to be amplified. We call this the "Damping Tail" system. 3. Composite foundation to equalize deformations under different loading conditions: We studied the vertical and horizontal deformations using sway-rocking and 3D FEM models including the ground, and applied multi-stage diameter-enlarged piles to the tower and a mat foundation to the podium to keep the foundations from torsional deformations and ensure structural safety.

Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event

  • Bucknor, Matthew;Grabaskas, David;Brunett, Acacia J.;Grelle, Austin
    • Nuclear Engineering and Technology
    • /
    • 제49권2호
    • /
    • pp.360-372
    • /
    • 2017
  • Many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event.

구조물 진동제어를 위한 전자석구동 HMD의 응용에 관한 연구 (A study on the Application of Electromagnetic Type HMD for Vibration Control of Structure)

  • 최현;정정교;김두훈;이상조
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.280-285
    • /
    • 2000
  • With recent development of technology of high stiffness material and the structural design, the construction of high rise structures such as tall building, tower has increased. The more flexible and slender structure is vulnerable to the internal and external dynamic loads induced by earthquake, wind and traffic load. There have been great effort and many researches to minimize the influence of dynamic loads on the structure. The traditional and stable method, the application of the passive damper, is not able to comply with various dynamic loads, while the mass damper which active control technology is integrated can effectively comply with load types. Therefore, the application of active control of huge structures with AMD(Active mass damper) or HMD(Hybrid Mass damper) is increasing. Up to now, most of actuators are servomotor and hydraulic actuator. But it is known that the electromagnetic actuator applies non contacting control force, which makes the control system easier with no characteristic change depending on time. In this paper, Hybrid mass damper with electromagnetic actuator was designed and applied to building scaled structure. The performance of designed HMD tested by shake table test is included.

  • PDF

Development of a methodology for damping of tall buildings motion using TLCD devices

  • Diana, Giorgio;Resta, Ferruccio;Sabato, Diego;Tomasini, Gisella
    • Wind and Structures
    • /
    • 제17권6호
    • /
    • pp.629-646
    • /
    • 2013
  • One of the most common solutions adopted to reduce vibrations of skyscrapers due to wind or earthquake action is to add external damping devices to these structures, such as a TMD (Tuned Mass Damper) or TLCD (Tuned Liquid Column Damper). It is well known that a TLCD device introduces on the structure a nonlinear damping force whose effect decreases when the amplitude of its motion increases. The main objective of this paper is to describe a Hardware-in-the-Loop test able to validate the effectiveness of the TLCD by simulating the real behavior of a tower subjected to the combined action of wind and a TLCD, considering also the nonlinear effects associated with the damping device behavior. Within this test procedure a scaled TLCD physical model represents the hardware component while the building dynamics are reproduced using a numerical model based on a modal approach. Thanks to the Politecnico di Milano wind tunnel, wind forces acting on the building were calculated from the pressure distributions measured on a scale model. In addition, in the first part of the paper, a new method for evaluating the dissipating characteristics of a TLCD based on an energy approach is presented. This new methodology allows direct linking of the TLCD to be directly linked to the increased damping acting on the structure, facilitating the preliminary design of these devices.

Analysis of seismic mid-column pounding between low rise buildings with unequal heights

  • Jiang, Shan;Zhai, Changhai;Zhang, Chunwei;Ning, Ning
    • Earthquakes and Structures
    • /
    • 제15권4호
    • /
    • pp.395-402
    • /
    • 2018
  • Floor location of adjacent buildings may be different in terms of height elevation, and thus, the slab may hit on the columns of adjacent insufficiently separated buildings during severe ground motions. Such impacts, often referred to as mid-column pounding, can be catastrophic. Substantial pounding damage or even total collapse of structures was often observed in large amount of adjacent low rise buildings. The research on the mid-column pounding between low rise buildings is in urgency need. In present study, the responses of two adjacent low rise buildings with unequal heights and different dynamic properties have been analyzed. Parametric studies have also been conducted to assess the influence of story height difference, gap distance and input direction of ground motion on the effect of structural pounding response. Another emphasis of this study is to analyze the near-fault effect, which is important for the structures located in the near-fault area. The analysis results show that collisions exhibit significant influence on the local shear force response of the column suffering impact. Because of asymmetric configuration of systems, the structural seismic behavior is distinct by varying the incident directions of the ground motions. Results also show that near-fault earthquakes induced ground motions can cause more significant effect on the pounding responses.