• Title/Summary/Keyword: earthquake energy

Search Result 908, Processing Time 0.029 seconds

Ductility Evaluations of Internally Confined Hollow R.C Piers (내부 구속 중공 R.C 교각의 연성도 평가)

  • Han, Taek-Hee;Cho, In-Seuck;Kang, Young-Jong;Lee, Myeong-Sub
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.353-360
    • /
    • 2005
  • When the weight if a concrete member makes problems, or when the cost of the concrete is relatively high, it may be economical to use a hollow concrete member. But a hollow R.C Pier may have poor ductility because of the brittle failure at the inner face of the hollow R.C Pier. This brittle failure results from the absence of the confinement at the inner face of the hollow R.C Pier. To avoid this brittle failure an internally confined hollow R.C Pier was developed. Test results show that the energy ductility ratio of a internally confined hollow R.C Pier have a superior energy ductility ratio to a general hollow R.C Pier.

  • PDF

Seismic Capacity of Reinforced Concrete Frames Retrofitted with H-beam Frame (H형강 프레임으로 보강한 철근 콘크리트 골조의 내진성능 평가)

  • Kim, Min Sook;Choi, Hosoon;Song, Seung Eon;Lee, Young Hak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.127-132
    • /
    • 2013
  • This study proposed proposes a retrofitting method using an H-beam frame to improve the seismic performance of non-seismic designed reinforced concrete frames. To evaluate the seismic performance with the H-beam frames, a cyclic lateral load test was performed and the experimental result was compared with the bared frame, and a masonry infilled RC frame. The results was were analyzed regarding aspects of the load-displacement hysteresis behavior, effective stiffness, displacement ductility, and cumulative energy dissipation. AlsoIn addition, it was possible to prove both an increase of in the maximum load capacity, effective stiffness, and energy dissipation capacity using the H-beam frame.

Structural Performance of RC Frame with SAFE Damper (SAFE댐퍼 보강골조의 구조성능 실험적 평가)

  • So, Byeong-Chan;Lee, Chang-Hwan;Ju, Young-Kyu
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.1
    • /
    • pp.85-94
    • /
    • 2015
  • SAFE damper is a hybrid damper which is comprised of a friction damper and a metallic damper. These two dampers combine to resist external energy in stages. Under minor earthquake loads, the friction damper operates alone. However, the friction damper and metallic damper dissipate the energy together when a severe earthquake occurs. In comparison with other methods for seismic retrofitting, the SAFE damper has many advantages. The SAFE damper doesn't cause damage to façade of the building, and the construction period can be reduced when retrofitting. This paper describes experiments evaluating the structural performance of the SAFE damper. From the results, it was found that the structural performance of a conventional RC bare frame can be significantly improved by the installation of the SAFE damper.

An Experimental Study of Ground Motion under the Dynamic Load (동하중재하시 지반진동에 관한 실험적 연구)

  • 김문겸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.126-131
    • /
    • 1997
  • Recently, the ground motion occurred by vehicles or trains has been recognized one of the major factors of damage of structures nearly the motion source. To isolate the environments from ground motions, it is necessary to understand the wave propagation in half spaces. Especially, Rayleigh wave is the primary concern because it transmits a major portion of the total source energy and decays the energy more slowly with response to distance than the other waves. In this study, the preliminary data(wave length and damping effect) to design the isolating system are obtained. For this, a field dynamic test is performed, using the exciter which can generate the 100kN vertical cyclic load in the range of 1-60 Hz is used. The fifteen accelerometers to measure the ground response are set up in 3 radial direction at intervals of 10 meters in each row. The wave lengths are calculated using the distance and the phase between the measuring points. The damping effects of the Rayleigh-wave are also observed from the experiments.

  • PDF

Monitoring of Subsurface Temperature Variation as Geothermal Utilization (지종열 활용에 따른 온도변화 모니터링)

  • Lee, Tae-Jong;Shim, Byoung-Ohan;Song, Yoon-Ho
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.6 no.1
    • /
    • pp.29-35
    • /
    • 2010
  • Long-term temperature monitoring has been performed for ground heat exchanger at the Earthquake Research Center (ERC) building in Korea Institute of Geoscience and Mineral Resources (KIGAM). For the 3 years of monitoring, overall temperature increases are observed at various depths within a borehole heat exchanger. But monitoring of ground temperature variation at the monitoring well beforehand showed that geothermal utilization is not the only source for the temperature increase, Because various kinds of sources can cause the ground temperature change, more thorough investigation should be followed.

Transmitting Boundary for the Seismic Response Analysis of Dam including surface sloshing and Bottom Absorption (수면파와 저면흡수가 고려된 댐 지진응답해석을 위한 전달경계)

  • 김재관
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.180-187
    • /
    • 1998
  • One of the major difficulties in the seismic analysis of a dam-reservoir system is the treatment of the energy radiation in the upstream direction of the reservoir. In this paper a new transmitting boundary is presented that can model properly the radiation of energy in the far field direction of a semi-infinite reservoir with constant depth. In the newly developed method, effects of surface wave motion are taken into account and the reservoir-foundation interaction is approximately accounted for with an absorbing boundary condition. If a dam has vertical upstream face and the infinitely long reservoir maintains constant depth, then the proposed transmitting boundary can be directly coupled with the model of dam body. In present study, the dam body is assumed to behave elastically and modeled by finite element method. Seismic responses of a dam model are investigated using the newly developed transmitting boundary.

  • PDF

Active Control Algorithm Using Probability Distribution of the Energy of Structure (구조물의 에너지 확률분포를 이용한 능동제어 알고리듬)

  • 황재승;이상현;박지훈;민경원
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.73-80
    • /
    • 2001
  • 구조물이 가지는 에너지의 확률밀도함수를 이용한 능도제어 알고리듬을 제안한다. 구조물의 에너지는 Rayleigh 확률분포를 가지는 것으로 가정된다. 이것은 에너지가 항상 양의 값을 가지고 최소에너지가 발생할 확률은 1이라는 조건을 Rayleigh 확률분포가 만족시킨다는 사실에 근거한다. 제어력의 크기는 가정된 확률밀도함수에 따라 구조물의 에너지가 설계자에 의해 설정된 에너지 임계값을 넘을 확률의 크기에 비례하도록 산정되며, 제어력의 방향은 Lyapunov 제어기 설계기법에 따라 결정된다. 제시된 알고리듬은 LQR 제어기와 비교하여 최대응답을 줄이는 효과를 가지며, 제어력의 임계를 고려할 수 있는 장점을 가진다. 또한 Lyapunov 제어기에서 발생가능한 채터링(chattering)현상을 피할 수 있다.

  • PDF

Influence of soil-structure interaction on seismic responses of offshore wind turbine considering earthquake incident angle

  • Sharmin, Faria;Hussan, Mosaruf;Kim, Dookie;Cho, Sung Gook
    • Earthquakes and Structures
    • /
    • v.13 no.1
    • /
    • pp.39-50
    • /
    • 2017
  • Displacement response and corresponding maximum response energy of structures are key parameters to assess the dynamic effect or even more destructive structural damage of the structures. By employing them, this research has compared the structural responses of jacket supported offshore wind turbine (OWT) subjected to seismic excitations apprehending earthquake incidence, when (a) soil-structure interaction (SSI) has been ignored and (b) SSI has been considered. The effect of earthquakes under arbitrary angle of excitation on the OWT has been investigated by means of the energy based wavelet transformation method. Displacement based fragility analysis is then utilized to convey the probability of exceedance of the OWT at different soil site conditions. The results show that the uncertainty arises due to multi-component seismic excitations along with the diminution trend of shear wave velocity of soil and it tends to reduce the efficiency of the OWT to stand against the ground motions.

Vibration Control of a Benchmark Cable-Stayed Bridge using Maximum Eenergy Dissipation Algoritm (Maximum Energy Dissipation Algorithm을 이용한 벤치마크 사장교의 제어)

  • Cho, Sang Won;Jung, Hyung Jo;Han, La San
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.435-441
    • /
    • 2003
  • 본 논문에서는 Maximum Energy Dissipation Algorithm(MEDA) 사장교의 MR댐퍼제어에 적용하고자 한다 MR댐퍼의 제어를 위해서 여러 제어 이론들이 제안되었으나, 각각의 특성에도 불구하고 성능면에서는 큰 차이가 없다 MEDA는 Lyapunove 직접법을 바탕으로 군성되는 제어이론으로써, 15년전에 제안되었음에도 실제 토목구조물에는 적용된 바 없어 그 성능 및 장점이 제대로 검증되지 않았다. 따라서 본 논문에서는 벤치마크 사장교 수치예제를 통해서, MEDA의 토목구조물에의 적용성을 성능(performance)과 강인성(robustness) 측면에서 분석하려한다. 수치예제에서 다양한 지진에 대한 층간변위, 가속도, 그리고 상대변위의 각 제어기법에 의한 감소량은 벤치마크문제에 정의된 평가지수(evaluation criteria)를 사용하였다.

  • PDF

Dynamic behavior of a seven century historical monument reinforced by shape memory alloy wires

  • Hamdaoui, Karim;Benadla, Zahira;Chitaoui, Houssameddine;Benallal, Mohammed Elamine
    • Smart Structures and Systems
    • /
    • v.23 no.4
    • /
    • pp.337-345
    • /
    • 2019
  • This work resumes a research that proposes the use of the technique based on the dissipation energy of the shape memory alloy (SMA) ties. It focuses principally on the assessment of the effectiveness of the use of these smart materials on displacements, accelerations and the stresses of the minaret of the great mosque of Ajloun in Jordan. The 3-D finite element model of the minaret is performed by the ANSYS software. First of all, the proposed model is calibrated and validated according to the experimental results gathered from ambient vibration testing results. Then, a nonlinear transient analysis is considered, when the El-Centro earthquake is used as the input signal. Different simulating cases concerning the location, number and type of SMA devices are proposed in order to see their influence on the seismic response of the minaret. Hence, the results confirm the effectiveness of the proposed SMA device.