• 제목/요약/키워드: earthquake design

검색결과 2,179건 처리시간 0.028초

시설물별 지진응답계측기 설치 운영에 관한 기준 및 지침 (Standard and Guideline for Installation and Management of Earthquake Instruments for Each Facilities)

  • 김재관
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.458-467
    • /
    • 2000
  • The standard of performance-based seismic design accepted by Ministry of Construction and Transport requires to install and manage earthquake instruments for the facilities of seismic category I and to acquire earthquake response data of these facilities at earthquake events. So detailed standard and guideline for installation and management of earthquake instruments for each facilities according to the seismic design standard are getting ready. This paper presents the part of installation locations of sensors in that detaile standard and guideline.

  • PDF

지진하중을 받는 정사각형 강재 액체저장탱크의 벽면 압력 응답 해석 (Earthquake-Induced Wall Pressure Response Analysis of a Square Steel Liquid Storage Tank)

  • 윤장혁;강태원;양현익;전종수
    • 한국지진공학회논문집
    • /
    • 제22권5호
    • /
    • pp.261-269
    • /
    • 2018
  • This study examines earthquake-induced sloshing effects on liquid storage tanks using computation fluid dynamics. To achieve this goal, this study selects an existing square steel tank tested by Seismic Simulation Test Center at Pusan National University as a case study. The model validation was firstly performed through the comparison of shaking table test data and simulated results for the water tank subjected to a harmonic excitation. For a realistic estimation of the wall pressure response of the water tank, three recorded earthquakes with similar peak ground acceleration are applied:1940 El Centro earthquake, 2016 Gyeongju earthquake, and 2017 Pohang earthquake. Wall pressures monitored during the dynamic analyses are examined and compared for different earthquake motions and monitoring points, using power spectrum density. Finally, the maximum dynamic pressure for three earthquakes is compared with the design pressure calculated from a seismic design code. Results indicated that the maximum pressure from the El Centro earthquake exceeds the design pressure although its peak ground acceleration is less than 0.4 g, which is the design acceleration. On the other hand, the maximum pressure due to two Korean earthquakes does not reach the design pressure. Thus, engineers should not consider only the peak ground acceleration when determining the design pressure of water tanks.

A methodology for design of metallic dampers in retrofit of earthquake-damaged frame

  • Zhang, Chao;Zhou, Yun;Weng, Da G.;Lu, De H.;Wu, Cong X.
    • Structural Engineering and Mechanics
    • /
    • 제56권4호
    • /
    • pp.569-588
    • /
    • 2015
  • A comprehensive methodology is proposed for design of metallic dampers in seismic retrofit of earthquake-damaged frame structures. It is assumed that the metallic dampers remain elastic and only provide stiffness during frequent earthquake (i.e., earthquake with a 63% probability of exceedance in 50-year service period), while in precautionary earthquake (i.e., earthquake with a 10% probability of exceedance in 50-year service period), the metallic dampers yield before the main frame and dissipate most of the seismic energy to either prevent or minimize structural damages. Therefore by converting multi-story frame to an equivalent single-degree-of-freedom system, the added stiffness provided by metallic dampers is designed to control elastic story drifts within code-based demand under frequent earthquake, and the added damping with the combination of added stiffness influences is obtained to control structural stress within performance-based target under precautionary earthquake. With the equivalent added damping ratio, the expected damping forces provided by metallic dampers can be calculated to carry out the configuration and design of metallic dampers along with supporting braces. Based on a detailed example for retrofit of an earthquake-damaged reinforced concrete frame by using metallic dampers, the proposed design procedure is demonstrated to be simple and practical, which can not only meet current China's design codes but also be used in retrofit design of earthquake-damaged frame with metallic damper for reaching desirable performance objective.

설계기준초과지진에 대한 원전 배관 평가 방법 검토 (Review of Evaluation Method for Nuclear Power Plant Pipings under Beyond Design Basis Earthquake Condition)

  • 이대영;박흥배;김진원;김윤재
    • 한국압력기기공학회 논문집
    • /
    • 제12권1호
    • /
    • pp.56-61
    • /
    • 2016
  • After Japanese Fukushima nuclear power plant accident caused by the beyond design basis earthquake and tsunami, it has turned to be a major challenge for nuclear safety. IAEA, US NRC and EU have provided new safety design standards for beyond design basis event, Domestic regulatory bodies have also enacted guidances for licensees and applicants on additional methods related to beyond design basis events. This paper describes several evaluation methods for applying to nuclear power plants piping for beyond design basis earthquake. As a results, energy method based on the absorbed energy on nuclear power plant, deterministic method following design code and theory, experience method considering past earthquake data and information and probabilistic methods similar to probabilistic risk assessment were reviewed.

설계기준초과지진 하의 원전 배관 구조건전성 평가를 위한 변형률 기반 방법 (Strain-Based Structural Integrity Evaluation Methods for Nuclear Power Plant Piping under Beyond Design Basis Earthquake)

  • 이대영;박흥배;김진원;류호완;김윤재
    • 한국압력기기공학회 논문집
    • /
    • 제12권2호
    • /
    • pp.66-70
    • /
    • 2016
  • Following the 2011 Fukushima Nuclear Power Plant accident, the IAEA has issued a revised version of the Nuclear Safety Standard for beyond design basis earthquake to consider the core meltdown accident. In Korea, relevant laws and regulations were also revised to consider beyond design basis earthquake to nuclear components. In this paper, CAV, an seismic damage factor that determines the restart of nuclear power plant after operating breakdown earthquake, is proposed for extension to the beyond design basis earthquake. For pipings not satisfying the beyond design basis earthquake condition, several evaluation methods are suggested, such as strain-based evaluation methods, simple nonlinear analysis method and cumulative damage evaluation method.

지진대비 댐안전관리를 위한 지진감시시스템 구축 및 계측기록 활용 (Development of Dam Earthquake Monioring System and Application of Earthquake Records for Dam Safety Management against Earthquake)

  • 하익수;이종욱;조성은;오병현
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.1389-1396
    • /
    • 2008
  • The recent Sichuan earthquake(2008) in China and Iwate-Miyazaki earthquake(2008) in Japan give Korea peninsula warning that it is no more safety zone against damage by earthquake events. So, rapid and appropriate countermeasures for dam operation and management against earthquake are needed. In Korea earthquake design standard(MOCT, 1997) has been revised after Kobe earthquake. Installation of seismometer and monitoring of earthquake for special class dams is requlated in dam aseismic design standard(MOCT, 2001). Accelerometer installation project for existing dams has been carrying out by K-water to establish an earthquake network for dam safety. Real-time dam earthquake monitoring network has also been developed to detect an earthquake efficiently and to warn to dam administrators as soon as possible. In this study, dam real-time earthquake monitoring system developed by K-water was introduced and applicability of real earthquake record measured by this system to dam safety management was illustrated.

  • PDF

2017년 포항지진으로 인하여 발생된 최대지반가속도 (PGA)예측 (Prediction of Peak Ground Acceleration Generated from the 2017 Pohang Earthquake)

  • 지현우;한상환
    • 한국지진공학회논문집
    • /
    • 제22권3호
    • /
    • pp.211-217
    • /
    • 2018
  • The Pohang earthquake with a magnitude of 5.4 occurred on November 15, 2018. The epicenter of this earthquake located in south-east region of the Korean peninsula. Since instrumental recording for earthquake ground motions started in Korea, this earthquake caused the largest economic and life losses among past earthquakes. Korea is located in low-to moderate seismic region, so that strong motion records are very limited. Therefore, ground motions recorded during the Pohang earthquake could have valuable geological and seismological information, which are important inputs for seismic design. In this study, ground motions associated by the 2018 Pohang earthquake are generated using the point source model considering domestic geological parameters (magnitude, hypocentral distance, distance-frequency dependent decay parameter, stress drop) and site amplification calculated from ground motion data at each stations. A contour map for peak ground acceleration is constructed for ground motions generated by the Pohang earthquake using the proposed model.

Strong ground motion characteristics of the 2011 Van Earthquake of Turkey: Implications of seismological aspects on engineering parameters

  • Beyen, Kemal;Tanircan, Gulum
    • Earthquakes and Structures
    • /
    • 제8권6호
    • /
    • pp.1363-1386
    • /
    • 2015
  • The October 23 2011 Van Earthquake is studied from an earthquake engineering point of view. Strong ground motion processing was performed to investigate features of the earthquake source, forward directivity effects during the rupture process as well as local site effects. Strong motion characteristics were investigated in terms of peak ground motion and spectral acceleration values. Directiviy effects were discussed in detail via elastic response spectra and wide band spectograms to see the high frequency energy distributions. Source parameters and slip distribution results of the earthquake which had been proposed by different researchers were summarized. Influence of the source parameters on structural response were shown by comparing elastic response spectra of Muradiye synthetic records which were performed by broadband strong motion simulations of the earthquake. It has been emphasized that characteristics of the earthquake rupture dynamics and their effects on structural design might be investigated from a multidisciplinary point of view. Seismotectonic calculations (e.g., slip pattern, rupture velocity) may be extended relating different engineering parameters (e.g., interstorey drifts, spectral accelerations) across different disciplines while using code based seismic design approaches. Current state of the art building codes still far from fully reflecting earthquake source related parameters into design rules. Some of those deficiencies and recent efforts to overcome these problems were also mentioned. Next generation ground motion prediction equations (GMPEs) may be incorporated with certain site categories for site effects. Likewise in the 2011 Van Earthquake, Reverse/Oblique earthquakes indicate that GMPEs need to be feasible to a wider range of magnitudes and distances in engineering practice. Due to the reverse faulting with large slip and dip angles, vertical displacements along with directivity and fault normal effects might significantly affect the engineering structures. Main reason of excessive damage in the town of Erciş can be attributed to these factors. Such effects should be considered in advance through the establishment of vertical design spectra and effects might be incorporated in the available GMPEs.

전단벽 구조시스템의 내진성능평가 지표 산정 (Calculation of Seismic Capacity Evaluation Index of Shear Wall System)

  • 박태원;나승욱;우운택;정란
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.223-230
    • /
    • 2002
  • Earthquake resistance design has been developed many countries like Japan, USA, Mexico, New Zealand etc., which countries have experienced many earthquakes. Nowadays, earthquake resistance design has come into worldwide use. In Korea, the seismic design regulations have been established since 1988 in order to minimize the economic losses. Recently performance based design method has been adopted as a new Earthquake resistance design method. These regulations, however, are targeted for newly constructed buildings, In Korea, there are no regulations for existing buildings that built before 1988. On the other hand, in Japan and USA, the seismic performance evaluation is coded. In Japan, the evaluation index which can measure seismic performance has been made. So, we need to prepare the regulations that evaluate the seismic performance, furthermore proper retrofitting design guideline needs to be proposed when remodeling old buildings. In this research, various seismic performance evaluation methods which are being used in Japan and USA are reviewed in order to establish seismic performance evaluation index for those existing old structures in Korea.

  • PDF

Seismic response characteristics of base-isolated AP1000 nuclear shield building subjected to beyond-design basis earthquake shaking

  • Wang, Dayang;Zhuang, Chuli;Zhang, Yongshan
    • Nuclear Engineering and Technology
    • /
    • 제50권1호
    • /
    • pp.170-181
    • /
    • 2018
  • Because of the design and construction requirements, the nuclear structures need to maintain the structural integrity under both design state and extreme earthquake shaking. The base-isolation technology can significantly reduce the damages of structures under extreme earthquake events, and effectively protect the safeties of structures and internal equipment. This study proposes a base-isolation design for the AP1000 nuclear shield building on considering the performance requirements of the seismic isolation systems and devices of shield building. The seismic responses of isolated and nonisolated shield buildings subjected to design basis earthquake (DBE) shaking and beyond-design basis earthquake (BDBE) shaking are analyzed, and three different strategies for controlling the displacements subjected to BDBE shaking are performed. By comparing with nonisolated shield buildings, the floor acceleration spectra of isolated shield buildings, relative displacement, and base shear force are significantly reduced in high-frequency region. The results demonstrate that the base-isolation technology is an effective approach to maintain the structural integrity which subjected to both DBE and BDBE shaking. A displacement control design for isolation layers subjected to BDBE shaking, which adopts fluid dampers for controlling the horizontal displacement of isolation layer is developed. The effectiveness of this simple method is verified through numerical analysis.