• Title/Summary/Keyword: earth work

Search Result 622, Processing Time 0.023 seconds

Task-Visual Information Map to Develop AR Navigators of Construction Equipment (건설장비 AR 네비게이터 개발을 위한 작업-시각정보 맵 도출)

  • Song, Sujin;Kang, Hojun;Kim, Hanbeen;Moon, Taenam;Shin, Do Hyoung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.3
    • /
    • pp.116-124
    • /
    • 2016
  • Work efficiency of earth work which is one of the main works occurring in construction site mainly depends on the performance of individual operators of earth work equipment. Consequently, the skill of individual operators of earth work equipment can significantly affect overall construction schedules. Many invisible areas inevitably exist in construction site because of the nature of construction site where occlusions occur from structures being built, installed or moving equipment, moving workers, etc. The lack of visual information regarding tasks critically impedes the effective performance of operators of earth work equipment. AR (Augmented Reality) is a computer technology that superimposes virtual objects onto the real world scene. This characteristic of AR may address the lack of visual informations in earth work process, thus helping to improve the work efficiency of operators of earth work equipment. The purpose of this study is to present a task-visual information map that identifies visual informations required in tasks of earth work and which of the tasks are suitable for AR technology. This study focuses on visual informations in tasks of earth work with excavators. The map was created based on the investigations on the problems of each task of earth work with excavators and visual informations required to address the problems. Through the map, four visual informations were found to be suitable for AR technology to improve the work efficiency of excavator operators. Based on the findings of this study, AR systems for excavators can be developed more effectively.

Development and Evaluation of High-precision Earth-work Calculating System using Drone Survey (드론을 활용한 고정밀 토공량 산출 시스템 개발 및 평가)

  • Kim, Sewon;Kim, YoungSeok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.87-95
    • /
    • 2019
  • Earth-work calculation is the important data for estimating the optimal construction cost at the construction site. Earth-work calculations require the accurate terrain data and precise soil volume calculations. Drone surveying technology provides accurate topography in a short time and economic advantages. In this paper, a drone surveying technique was used to derive a high precision soil volume calculation system. Field demonstration were performed to verify the accuracy of the volume measurement system. The results of earth-work calculation using drone survey were compared with those of GPS surveying. In addition, the developed earth-work volume calculation algorithm is compared with the existing aerial survey software (Pix4D) to verify the accuracy.

A Study on The Optimum Earthwork Volume using GIS (GIS기법을 이용한 토공산정의 최적화)

  • Kim, Sung-Hun;Sim, Hee-Chul;Do, Kwang-Min;Lee, Jong-Dal
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.344-348
    • /
    • 2007
  • This study was made a process of earth work amount and earth work transfer etc. This research uses DAS S/W and GIS S/W, comparison and analyze. DAS S/W is a program develop in Korea land corporation. This purpose of this study is presenting a method that at it, can calculate detailed earth work. Also, apply GIS method to DAS S/W using earth work calculation data. when GIS analysis method applied. it can improve the accuracy of earth work calculate method and earth work model's efficiency.

  • PDF

A Program for Calculating Earth Works by Railway Route Selection (철도노선 선정에 따른 토공량 산출 프로그램 개발)

  • Lee, Dong-Wook;Jee, Sang-Bok;Lee, Tai-Sik
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1168-1173
    • /
    • 2004
  • The alignment design is one of the most influencing elements in earth work for the railway design. The amount of earth work mostly depends on the route, and the construction cost for railway construction largely depends on it. For this reason. it is necessary to develop a program for the construction cost estimation by route alternatives. This study introduces a program for the estimation of the earth work amount including the logics and the way to use.

  • PDF

A Study on Prediction of Earth Retaining Work Cost in the Project Planning Stage -Focusing on Apartment Construction Projects in Seoul- (사업기획단계에서 흙막이 공사비 예측에 관한 연구 -서울시내 아파트 건설사업을 중심으로-)

  • Lee, Jin-Kyu;Yang, Kyung-Jin;Park, Ki-Hyeon;Kim, Chan-kee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.385-392
    • /
    • 2021
  • In general, earth retaining work in construction works enables the construction of structures, prevents the displacement of the surrounding ground to the maximum extent, and plays an important role in ensuring the safety of the surrounding structures and field workers. The earth retaining work and the construction method differ according to the various ground characteristics, surrounding topographical characteristics, repair environment, and design conditions. In particular, in the case of Seoul city, the environments and ground conditions differ according to the area. This study analyzed the earth retaining work cost mainly for the apartment construction project in Seoul and calculated the approximate earth retaining work cost at the project planning stage. A model was developed to predict the cost of earth retaining work that matches the characteristics of Seoul City and predict the construction cost for earth retaining work. This paper presents the predicted earth retaining work cost using a multiple regression model that applies 10 project outlines as independent variables. The error rate of the prediction result of the earth retaining work cost of the apartment construction project in Seoul using multiple regression models was 10.75%.

An Analysis of Influences on Partial Work Rates under the Whole Work Rates on the Landscape Constructions in the Ulsan Grand Park (울산대공원 조경공사의 각 세부공정이 전체공정율에 미치는 영향분석)

  • 성백진;이재근;최종희
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.6
    • /
    • pp.64-72
    • /
    • 2004
  • This study analyses influences on partial work rates under whole work rates on landscape constructions in Ulsan Grand Park. The schedule management is one of the factors that are very important to the process management of landscape construction. The time process of the whole construction is supposed to be affected by several kinds of work that organize the whole construction. First, this study divides the construction of Ulsan Grand Park into 10 kinds of works: earth work, rain and sanitary sewage water work, water-supplying work, planting work, paving work, water proofing work, fountain work, instituting work and temporary work. Then the time-process curves of all kinds of work are statistically compared to that of the whole construction. The trial methods of statistics are lineal regression, non-lineal regression, and principal analysis. In the result of the non-lineal regression, the rain and sanitary sewage water work, the water-supplying work and the earth work strongly affected the whole construction. The principal analysis results show that the whole construction is affected strongly by the water-supplying work, the rain and sanitary sewage water work and the earth work. However the lineal regression is shown to be senseless because of its high collinearity.

A Combination Model of Earthwork equipment using System Dynamics (시스템 다이내믹스를 활용한 토공장비의 조합 모형 연구)

  • Won, Seo-Kyung;Han, Choong-Hee;Kim, Sun-Kuk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.8 no.4
    • /
    • pp.194-202
    • /
    • 2007
  • The earth work has been improved with the utilization of capital intensive equipments. However, work performance is not satisfactory yet due to its experience-oriented characteristics in selecting the combination of earth work equipments. Therefore, it is required to study on appropriate and systematic methods in selecting a set of equipments for earth work in order to optimize the cost and time as well as to improve the productivity. The objectives of this paper are as followed : (1) developing an optimum combination model of earth work equipments by using a system dynamics technique. (2) testing and evaluating the model by the sample application to a case study. The research is limited to the work of excavating, loading and hauling. The suggested model is proved in practice, so it will assist engineers to make the proper decision for equipment planning of earth work.

Earthwork Plan Using the Precise 3D Topographic Data (3차원 정밀지형자료를 활용한 토공계획 개선)

  • Lee, Jin-Nyoung;Pyeon, Mu-Wook;Koo, Jee-Hee;Park, Jae-Sun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.1
    • /
    • pp.63-72
    • /
    • 2010
  • In this study, an earth work design program which will improve the efficiency of earth work and enable to carry out the design using 3D Geospace-based earth work modelling in design stage was developed. Estimate of accurate earth work volume is achievable using 3D grid DEM, and based on this, a mass calculation chart was developed for movement of earth and equipment. In consideration for the resources for various construction equipments needed for civil engineering works, soil conversion and the passage is displayed. In addition, the result is restored in the form of open API-based KLM to make it possible for the users to identify the progress of the construction, thereby enhancing the intuitive understanding of three-dimensional visualization and making it easier to share the result of the analysis.

A Study on the Self-contained Earth Retaining Wall Method Using Bracing (브레이싱을 이용한 자립식 흙막이 공법에 관한 연구)

  • Kim, Jong-Gil
    • Journal of Digital Convergence
    • /
    • v.17 no.3
    • /
    • pp.205-213
    • /
    • 2019
  • In a construction site, excavation work has a close relation with temporary earth retaining structure. In order to build the underground structure most effectively in a narrow space, prevent soil relaxation of the external behind ground in excavation work, and maintain a ground water level, it is required to install a temporary earth retaining structure that secures safety. To prevent soil washoff in underground excavation work, the conventional method of temporary earth retaining structure is to make a temporary wall and build the internal support with the use of earth anchor, raker, and struct for excavation work. RSB method that improves the problem of the conventional method is to remove the internal support, make use of two-row soldier piles and bracing, and thereby to resist earth pressure independently for underground excavation. This study revealed that through the field application cases of RSB method and the measurement result, the applicability of the method for installing a temporary earth retaining structure, the assessment result, and displacement all met allowable values of measurement, and that the RSB method, compared to the conventional method, improved constructability and economy.

Performance Analysis of Earth Work Using Excavator in the Case of Forest Road Construction (임도공사시(林道工事時) 굴삭기(掘削機)를 이용(利用)한 토공작업(土工作業)의 공정분석(工程分析))

  • Lee, Joon Woo;Park, Bum-Jin
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.1
    • /
    • pp.82-89
    • /
    • 1998
  • This study was carried out to investigate working time, performance, and to predict performance that related to the factor of forest road in earth work using excavator. It was found that the real working time was 503 minutes in a day. The ratio of real working time and allowance per total working time was approximately 85.7% and 14.3% individually. The rate of soil movement(Sm) to net working time was 38.6%, and earth cutting(Ec) was 32.5%. According to performance analysis, performance of earth work using excavator($0.8m^3$) in straight part was 1.4 times larger than curve part and rock work using excavator($0.8m^3$) which had breaker in straight was 9.1 times larger than earth work using excavator($0.8m^3$) which had bucket. Performance of earth work using excavator($1.0m^3$) was 1.3 times larger than using excavator($0.8m^3$) in straight and curve part. Working performance in earth work using excavator($0.8m^3$) was influenced by the conditions of radius of curve, width of roadway, slope gradient. It is not influenced by diameter and number of root stock.

  • PDF