• Title/Summary/Keyword: earth retaining structure

Search Result 130, Processing Time 0.027 seconds

APPLICATION OF USN TECHNOLOGY FOR MONITORING EARTH RETAINING WALL

  • Sungwoo Moon;Eungi Choi;Injoon Kang
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.517-520
    • /
    • 2013
  • In construction operation, the temporary structure is used to support designed facilities or to provide work spaces for construction activities. Since the structure is used only during the construction operation, the operation may be given insufficient attention. The contractor is likely to try to save cost on the material and labor cost. This contractor's behavior frequently leads to construction accidents. In order to prevent accidents from the failure, the operation should be carefully monitored for identifying the effect of dynamics in the surrounding site area. Otherwise, any unexpected adversary effect could result in a very costly construction failure. This study presents the feasibility of the ubiquitous sensor network (USN) technology in collecting construction data during the construction operation of earth retaining walls. The study is based on the result at the Construction System Integration Laboratory (CSIL) at the Pusan National University. A USN-based system has been developed for monitoring the behavior of the temporary structure of earth retaining walls. The data collected from the sensors were used to understand the behavior of the temporary structure. The result of this study will be used in increasing the safety during the construction operation of retaining walls.

  • PDF

Stability Evaluation of Earth Retaining Structure using Tower Truss System (새로운 무지보 흙막이 공법의 안정성 평가)

  • Kim, Young-Seok;Kim, Ju-Hyong;Kim, Young-Nam;Kim, Seong-Hwan;Lee, Sung-Reol
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1324-1329
    • /
    • 2009
  • Needs for underground space development and utilization have been increasing in urban area. The conventional strutting method in excavation is effective to restrain the ground movements and displacements of earth structures but inefficient for workers because of small working space. The conventional earth reinforcement methods such as earth-anchor and soil-nailing also have limitation to apply in urban area due to threats to stability of adjacent buildings around excavation boundaries. Recently, many types of earth retaining structures are being developed to overcome disadvantages of conventional excavation methods in urban area. In this study, a series of numerical analyses were performed with MIDAS GTS, geotechnical analysis program and MIDAS Civil, structural analysis design program to evaluate behavior and stability of the new type of non-supporting earth retaining structure, called Temporary Tower System (TTS), consisting of tower truss structures with much economical and spatial advantage.

  • PDF

A case study on the landslide resulted from earth retaining wall failure (옹벽파괴에 의한 사면붕괴 사례연구)

  • Kim, Hyung-Woo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1084-1089
    • /
    • 2009
  • This paper presents the example of landslide triggered by the failure of earth retaining wall. Close examinations such as visual inspections and non-destructive testings revealed that the earth retaining wall does not have enough strength to resist active earth pressure and ground water pressure. This fact is proved to be a direct initiation of landslide. Numerical studies including slope stability analyses and seepage analyses were performed with material properties obtained by geophysical explorations and laboratory tests. The results of numerical studies show that the overturning of the earth retaining wall affects the slope stability, leading to landslide consequently.

  • PDF

The Analysis of the Important Problems on Designing and Constructing Earth Retaining Structures (지반굴착 흙막이 구조물 설계 및 시공시 중요문제점 분석)

  • Lee, Song;Kim, Ju-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.167-174
    • /
    • 2002
  • Earth retaining structure is constructed structure in order to construct a multistoried building, the subway, a subterranean downtown for effective use and obtainments of the limited ground. Recently, many kinds of research have been actively developed for a standardization and a database on designing and constructing of bridge, tunnel, road. With the works of database construction of that, many kinds of data with respect to statistics is cumulated. However, Database work of designed and constructed earth retaining structure in the construction field is wholly lacking and lagged behind in the works of database construction. This paper suggested classification system on indication data in connection with designing and constructing earth retaining structures a hundred fields. On the basis of that, code work with classification system was practised and DB program of indication data in connection with designing and constructing earth retaining structures was developed.

Passive earth pressure for retaining structure considering unsaturation and change of effective unit weight of backfill

  • Zheng, Li;Li, Lin;Li, Jingpei;Sun, De'an
    • Geomechanics and Engineering
    • /
    • v.23 no.3
    • /
    • pp.207-215
    • /
    • 2020
  • This paper presents a kinematic limit analysis for passive earth pressure of rigid retaining structures considering the unsaturation of the backfill. Particular emphasis in the current work is focused on the effects of the spatial change in the degree of saturation on the passive earth pressure under different steady-infiltration/evaporation conditions. The incorporation of change of effective unit weight with degree of saturation is the main contribution of this study. The problem is formulated based on the log-spiral failure model rather than the linear wedge failure model, in which both the spatial variations of suction and soil effective unit weight are taken into account. Parametric studies, which cover a wide range of flow conditions, soil types and properties, wall batter, back slope angle as well as the interface friction angle, are performed to investigate the effects of these factors on the passive pressure and the corresponding shape of potential failure surfaces in the backfill. The results reveal that the flow conditions have significant effects on the suction and unit weight of the clayey backfill, and hence greatly impact the passive earth pressure of retaining structures. It is expected that present study could provide an insight into evaluation of the passive earth pressure of retaining structures with unsaturated backfills.

A Design Method of Earth-Retaining Structure Constructed by a Row of Bored Piles in Cohesive Soils (점성토지반속 주열식 흙막이벽의 설계법)

  • Hong, Won-Pyo;Gwon, U-Yong;Go, Jeong-Sang
    • Geotechnical Engineering
    • /
    • v.5 no.3
    • /
    • pp.29-38
    • /
    • 1989
  • A design method is presented for the earth-retaining structure ccnslructtd by a row of bored Piles, which has such merits as low-vibration and low-noire during construction. And utility of the design method is investigated by performing a design example. First, theoretical rquations to estimate the resisting force of a row of earth-retaining was in cohesive soils are estabilished for grounds above and below bottom of excavation, reprctively. The characteristics of soils and the effect pile's interval can be considered logically in the theoretical equations. Then, the method for stability.analysis is presented for the earth-retaining piles by applying the theoretical equation of resisting forces on a row of piles. Finally, the design of earth-retaining piles is performed within the ranges which can satisfy the stabilities of both piles and soils. On investigation cf the sail-stability, the stability for bottom heave In cohesive soils is also investigated.

  • PDF

Earth Retaining Structure Using a Row of piles during Shallow Excavation in Soft Clay (연약점성토지반의 얕은 굴착시 줄말뚝을 이용한 흙막이공)

  • 홍원표;윤종민;송영식
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.191-201
    • /
    • 2000
  • In this study, the earth retaining structure using a row of piles considering plastic flow of the ground is suggested for shallow excavation works instead of conventional anchored sheet-pile wall method in the marine clays with high groundwater level. The behavior of the earth retaining structure using a row of piles is precisely observed during excavation by inclinometer and piezometer installed in opposite to the excavation side. As a result of field measurement, it was found that the behaviors of the piles and the soil were influenced mainly by slope of excavation face, interval ratio of piles, fixity condition of pile head, and stability number, etc. The earth retaining structure using a row of piles is ascertained for workability, stability, and economical construction on the soft ground having no adjacent structures.

  • PDF

Consideration of Failure Type on the Ground Excavation (지하굴착에 따른 붕괴유형에 대한 고찰)

  • Lee, Jung-Jae;Jung, Kyung-Sik;Lee, Chang-No
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.660-670
    • /
    • 2009
  • Neighboring construction becomes mainstream of Ground excavation in downtown area. This causes the displacement, deformation, stress condition, etc of the ground surroundings. Therefore Neighboring construction have an effect on Neighboring structure. All these years a lot of Neighboring construction carried out, and the accumulation of technology also get accomplished. But earth retaining structure collapse happens yet. Types of earth retaining structure collapse are 12. 1. Failure of anchor or strut system, 2. Insufficiency of penetration, 3. H-pile Failure on excessive bending moment, 4. Slope sliding failure, 5. Excessive settlement of the back, 6. Deflection of H-pile, 7. Joint failure of coupled H-pile, 8. Rock failure when H-pile penetration is rock mass, 9. Plane arrangement of support systems are mechanically weak, 10. Boiling, 11. Heaving, 12. Over excavation. But field collapses are difficult for classification according to the type, because collapse process are complex with various types. When we consider the 12 collapse field, insufficient recognition of ground condition is 4 case. Thorough construction management prevents from fault construction. For limitations of soil survey, It is difficult to estimate ground condition exactly. Therefore, it should estimate the safety of earth retaining system, plan for necessary reinforcement, according to measurement and observation continuously.

  • PDF

Investigation on seismic behavior of combined retaining structure with different rock shapes

  • Lin, Yu-liang;Zhao, Lian-heng;Yang, T.Y.;Yang, Guo-lin;Chen, Xiao-bin
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.599-612
    • /
    • 2020
  • A combination of a gravity wall and an anchor beam is widely used to support the high soil deposit on rock mass. In this study, two groups of shaking table test were performed to investigate the responses of such combined retaining structure, where the rock masses were shaped with a flat surface and a curved surface, respectively. Meanwhile, the dynamic numerical analysis was carried out for a comparison or an extensive study. The results were studied and compared between the combined retaining structures with different shaped rock masses with regard to the acceleration response, the earth pressure response, and the axial anchor force. The acceleration response is not significantly influenced by the surface shape of rock mass. The earth pressure response on the combined retaining structure with a flat rock surface is more intensive than the one with a curved rock surface. The anchor force is significantly enlarged by seismic excitation with a main earthquake-induced increment at the first intensive pulse of Wenchuan motion. The value of anchor force in the combined retaining structure with a flat rock surface is generally larger than the one with a curved rock surface. Generally, the combined retaining structure with a curved rock surface presents a better seismic performance.

The Standard Thesis of Objectivity Condition Evaluation for Infrastructure(Retaining Walls) (옹벽 시설물의 객관적인 상태평가 기준정립)

  • 이종영;신창건;장범수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06a
    • /
    • pp.3.1-11
    • /
    • 2003
  • Recently the problems related to the failure of the retaining wall structure has become great concern since the damage to the properties and human losses have occurred in the rainy season. However, a detail guideline on safety inspection and appropriate diagnosis on the retaining wall structure have not yet proposed and therefore, the inspection process and results are mainly dependant upon the engineers. The objective of this study is to propose objective and quantitative evaluation method for the condition based on the damage shapes and material types. In this purpose, composing materials of retaining wall are divided Into concrete, gabion, stone and reinforced earth, and then the evaluation items and method are suggested on the basis of the materials and structural characteristics of the retaining wall.

  • PDF