• Title/Summary/Keyword: early-strength

Search Result 1,659, Processing Time 0.024 seconds

Mock-up Test of Concrete Using AE Water Reducing Agent of Early-Strength Type in Construction Field (조기강도발현형 AE감수제를 사용한 콘크리트의 현장 Mock-up 실험)

  • 황인성;김기훈;김규동;이승훈;한천구
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2004.05a
    • /
    • pp.1-4
    • /
    • 2004
  • In this paper. applicability of high early strength type AE water reducing agent(HESAEWA) developed by the authors is discussed by applying Mock-up test. For fresh concrete properties, concrete using existing AE water reducing agent(EAEWRA) and HESAEW A meets the target slump and air content at jobsite. Setting time of concrete using HESAEWA is shorter than that using EAEWRA. Remarkable variance of bleeding and settlement is not observed with type of AE water reducing agent. For hardened concrete properties, use of HESAEW A results in higher strength development compared with that of EAEWRA at standard curing and in field curing condition. Reaching time to accomplish 5MPa of compressive strength. which is possible to remove side form. is taken using HESAEWA earlier than that of EAEWRA by 1day. Therefore, it is confirmed that use of HESAEWA can meet the requirements of general quality of concrete and achieve high early strength development as well as has a desirable field applicability.

  • PDF

A Study on Development of 1 Day Usable High Early Strength Concrete Using Hauyne C/K System Additives (아원계 조강재를 이용한 1일 공용 콘크리트 개발연구)

  • 박정준;백상현;신영훈;김병권;윤경구;엄태선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.73-76
    • /
    • 1999
  • In recent, concrete material like specific cement and additives having many functions hsa been developed. In road pavement, ultra high early strength cement or organic material are used to open the road early, but there are many restrictions like workable time and special equipment. We aim to developed specific concrete which 1 day strength is over 300kgf/$\textrm{cm}^2$ to open the road within one day and workable time is maintained over 1 hour that can make the concrete ready mixed concrete. In this study, we are convinced if the ratio of hauyne clinker or its additive is increased early strength property is progressed and if the ratio of non hydrous gypsum is increased longtime strength is progressed. The concrete strength is 290-310 kgf/$\textrm{cm}^2$ at 1 day, 570-640 kgf/$\textrm{cm}^2$ at 28 day and the workable time is maintained over 30 minutes. As the results of this experiments We find out the possibility to developed the 1 day usable ready mixed concrete with high early strength.

  • PDF

Compressive Strength Characteristics of 3D Printing Concrete in Low Temperature Environment by Using Early Strength Improvement Type Additive (조강형 첨가제 사용에 따른 저온환경에서의 3D 프린팅 콘크리트의 압축강도 특성)

  • Yoo, Byung-Hyun;Lee, Dong-gyu;Park, Jong-Pil;Hwang, Byoung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.386-392
    • /
    • 2020
  • The self-weight of the 3D printing concrete increases with increasing printing height. Therefore, the lower layer must be hardened within a suitable time to secure continuous printing performance. In particular, the hardening speed of concrete is slow in the winter season when the temperature was low. Hence, the early strength of 3D printing concrete requires improvement. In domestic and international literature, cases of increasing the early strength of concrete using inorganic chemical additives, such as amine-based, nitrate-based, sodium-based, and calcium-based, have been reported. In this study, early strength improvement-type additive samples (amine-based, nitrate-based, sodium-based) were prepared, and their performance was evaluated. When using a nitrate-based additive, the early strength was increased significantly in a 10 ℃ environment. In addition, it was possible to secure a higher early strength than the existing 3D printing concrete mixed at 20 ℃.

Fundamental characteristics of high early strength low heat concrete according to mineral binder and high early strength material combination (광물질 결합재 및 조강형 재료 조합에 따른 조강형 저발열 콘크리트의 기초적 특성)

  • Kim, Kyoungmin;Son, Hojung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.1
    • /
    • pp.27-32
    • /
    • 2014
  • This study analyzed the fundamental characteristics of concrete according to a ternary system mixing in order to reduce hydration heat of mass concrete and to improve early age strength. The results are as follows. The fluidity of unconsolidated concrete satisfied the target scope regardless of the binder conditions. When the replacement ratio between FA and BS increased, the slump of low heat-A mix and low heat-B mix increased, and air content was not affected by the change of binders. As for setting time, low heat cement mix had the fastest regardless of W/B, and high early strength low heat mix achieved 6 hours' reduction compared with low heat-B mix at initial set, and 12 hours' reduction at the final set respectively. As for the simple hydration heat, the low mix peak temperature was the highest and low heat-B mix had the lowest temperature. And high early strength low heat mix was similar with that of low heat-B. The compressive strength of hardened concrete had similar strength scope in all mixes except for low heat-B mix at early ages, and had unexceptionally similar one without huge differences at long-term ages.

A Study on Early Evaluation Method of Durability of PC Concrete According to the Accelerated Curing Conditions (촉진양생조건에 따른 PC콘크리트의 내구성 조기 평가기법 연구)

  • 김관호;박광수;신수균;이준구;장문기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.169-174
    • /
    • 2002
  • We can consider that the study on early evaluation of compressive strength and durability of concrete is useful to raise safety of quality control of concrete. In this paper, was proposed to method early to predict strength and durability of concrete with parameter, such as Water/cement(W/C) ratio and steam curing conditions. Through analyzing the relationship between the compressive strength and the amount of chloride penetration into concrete specimens, a new formula early estimating durability of the concrete structure was suggested.

  • PDF

An Effect on Early Temperature of Placing Concrete Affecting Compressive Strength of Concrete (콘크리트 타설 초기온도가 압축강도에 미치는 영향)

  • Park, Dae-Oh;Park, Young-Shin;Park, Jae-Myung;Gang, Yeon-Woo;Jun, Byung-Chea
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.641-644
    • /
    • 2008
  • The strength of concrete is developed by cement hydration reaction influenced by the circumferential temperatures. In this study, therefore, the experiments are conducted and evaluated about the characteristics as changes of early concrete placing temperature and curing temperature to understand the effects of the temperature which influences concrete properties. The results of the experiments changing the early concrete placing temperature in 5$^{\circ}C$ and 10$^{\circ}C$ are followed. In case of conducting standard concrete curing, early compressive strength development rate of the concrete which had low placing temperature was low, but it was shown that early compressive strength development rate was not affected by low placing temperature in age 28 days of concrete. In case of conducting outdoor curing in winter, early compressive strength development rate of the concrete which had high placing temperature was high in all test specimens. As a results, early compressive strength development of concrete was influenced by temperature of early concrete, but after aging 28 days of concrete, it was influenced by curing temperature rather than temperature of early concrete.

  • PDF

An Experimental Study on Early Strength Development of High-Strength Concrete to Apply Slip-Form (슬립폼 적용을 위한 고강도콘크리트의 조기강도 발현성상에 관한 실험적 연구)

  • 주지현;여동구;강석표;길배수;남재현;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.355-358
    • /
    • 2000
  • Nowadays, with high-storied and large-sized of structures, high-strength concrete is applied to the various kinds of concrete structure. Among of them, for reduction of completion time, high-strength concrete is applied to the high-storied tower, building which is constructed continuously by the slip-form method and it is expected to be on the increase. In this case, it is very important to grasp development of early-strength to apply the slip-form method. But the strength data prior 1 day is rare. Therefore, to apply slip-form method in field, this study aim is to present basic data for development of early-strength of high-strength concrete, through examining development of strength by different curing temperature, replacement of fly-ash.

  • PDF

A study on the early strength development characteristics of the polysilicon sludge mixed concrete (폴리실리콘 슬러지를 혼입한 콘크리트의 조기강도 발현 특성에 관한 연구)

  • Lee, Ji-Hwan;Park, Hee-Gon;Park, Gi-Hong;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.144-145
    • /
    • 2016
  • In this study, the research to be utilized as a binder to increase the early strength of concrete polysilicon sludge is a byproduct industries. In this paper, there is a purpose to confirm the initial strength performance of polysilicon sludge.

  • PDF

Modeling of Compressive Strength Development of High-Early-Strength-Concrete at Different Curing Temperatures

  • Lee, Chadon;Lee, Songhee;Nguyen, Ngocchien
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.2
    • /
    • pp.205-219
    • /
    • 2016
  • High-early-strength-concrete (HESC) made of Type III cement reaches approximately 50-70 % of its design compressive strength in a day in ambient conditions. Experimental investigations were made in this study to observe the effects of temperature, curing time and concrete strength on the accelerated development of compressive strength in HESC. A total of 210 HESC cylinders of $100{\times}200mm$ were tested for different compressive strengths (30, 40 and 50 MPa) and different curing regimes (with maximum temperatures of 20, 30, 40, 50 and $60^{\circ}C$) at different equivalent ages (9, 12, 18, 24, 36, 100 and 168 h) From a series of regression analyses, a generalized rate-constant model was presented for the prediction of the compressive strength of HESC at an early age for its future application in precast prestressed units with savings in steam supply. The average and standard deviation of the ratios of the predictions to the test results were 0.97 and 0.22, respectively.

An Experimental Study on the High Early Strength Development Properties of Concrete according to Batcher Plant Test and Mock-up Test (배쳐플랜트배합시험 및 실대부재시험을 통한 콘크리트의 조기강도 발현특성에 관한 실험적 연구)

  • Lee, Ji-Hwan;Lee, Jong-suk;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.1-5
    • /
    • 2008
  • In this study, batcher plant composition test and mock-up test were carried out to conduct comparison and analysis on flow behavior and strength properties of concrete at early age. As a result, it was found that slump and amount of air in batcher plant composition test reached the target range. As for compressive strength, composition using HESPC showed the most excellent strength development. In mock-up test which was carried out to find out the strength properties, two methods with specimen and core test body both revealed HESPC as the most excellent composition. However, strength estimation with ultrasonic survey presented less reliable data. As a result of the previously conducted indoor composition test and the mock-up test in this study, target performance of concrete at early age was 4day/cycle. It was found that the optimum conditions that meet the required strength, 5MPa/18hr and 14MPa/36hr in mullion and transom are; curing temperature above 15℃, W/B 45%, unit-water 165kg/㎥ and CHC cement.

  • PDF