• Title/Summary/Keyword: early fertilization

Search Result 419, Processing Time 0.034 seconds

Comparison of embryonic competence and clinical outcomes between early and late cumulus cell removal for in vitro fertilization

  • Pongsuthirak, Pallop
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.4
    • /
    • pp.362-367
    • /
    • 2021
  • Objective: The impact of early mechanical removal of cumulus cells on fertilization and embryonic development is not yet precisely known. This study aimed to investigate the effects of early and late cumulus cell removal on fertilization, polyspermy, embryonic development potential, blastocyst development, and clinical outcomes. Methods: A prospective study was conducted of patients who underwent in vitro fertilization between September 2019 and October 2020. Sibling oocytes were randomly allocated after insemination to early cumulus cell removal at 6 hours (group I) and late cumulus cell removal at 16-18 hours (group II). If total fertilization failure (TFF) was determined to have occurred at early cumulus cell removal, rescue intracytoplasmic sperm injection (ICSI) was performed. Fertilization, embryonic development, and pregnancy outcomes were compared. Results: A total of 912 oocytes were assigned to group I (458 oocytes) and group II (454 oocytes). Fertilization, polyspermy, embryo quality, and pregnancy outcomes were not significantly different between both groups. Rescue ICSI enabled fertilization of 79.2% of the TFF oocytes. Conclusion: Early cumulus cell removal at 6 hours had no significant difference in fertilization, polyspermy, embryo development, or obstetric and perinatal outcomes compared to late removal. Early cumulus cell removal combined with early rescue ICSI may have the potential to help couples with TFF.

Involvement of Nitric Oxide During In Vitro Fertilization and Early Embryonic Development in Mice

  • Kim, Bo-Hyun;Kim, Chang-Hong;Jung, Kyu-Young;Jeon, Byung-Hun;Ju, Eun-Jin;Choo, Young-Kug
    • Archives of Pharmacal Research
    • /
    • v.27 no.1
    • /
    • pp.86-93
    • /
    • 2004
  • Nitric oxide (NO) has emerged as an important intracellular and intercellular messenger, controlling many physiological processes and participating in the fertilization process via the autocrine and paracrine mechanisms. This study investigated whether nitric oxide synthase (NOS) inhibitior (L-NAME) and L-arginine could regulate in vitro fertilization and early embryonic development in mice. Mouse epididymal spermatozoa, oocytes, and embryos were incubated in mediums of variable conditions with and without L-NAME or L-arginine (0.5, 1, 5 and 10mM). Fertilization rate and early embryonic development were significantly inhibited by treating sperms or oocytes with L-NAME (93.8% vs 66.3%,92.1% vs 60.3%), but not with L-arginine. In contrast, fertilization rate and early embryonic development were conspicuously reduced when L-NAME or L-arginine was added to the culture media for embryos. Early embryonic development was inhibited by microinjection of L-NAME into the fertilized embryosin a dose-dependent manner, but only by high concentrations of L-arginine. These results suggest that a moderate amount of NO production is essential for fertilization and early embryo development in mice.

Cracking Hen's Egg for Transgenesis, without Cracking Them (정자에 의한 외래 DNA의 계란내 도입: 유전자 변환 닭 생산을 위한 장애 극복)

  • 이기석;김기동;이상호
    • Korean Journal of Poultry Science
    • /
    • v.26 no.2
    • /
    • pp.109-118
    • /
    • 1999
  • Hen's eggs have been regarded as one of the best animal bioreactors to produce biologically active peptides originated from many organisms including human. Despite the last decade's efforts to produce transgenic chicken for any commercial purposes, the results so far reported are very disappointing, indicating that hen's eggs are very difficult to crack for transgenesis. Comparatively large female gamete with enormous amount of yolk may be one of the major obstacles in achieving a similar feat to those of other vertebrate species including mouse, sheep, fish and frog. The delay or less efficiency evidenced may instruct to try an alternative way of gens transfer into chicken egg. Sperm-mediated gene transfer is one of them, and may require a great deal of understanding of mechanisms involved in early fertilization and embryonic development. In other animals where the technique was successful, basic mechanisms have been well studied and established only by painstaking efforts for decades. This paper discusses the accumulated knowledge on early fertilization mechanism in the chicken and how can this information be utilitzed to find the alternative gene transfer in making transgenic chicken.

  • PDF

In Vitro Fertilization and Development of Bovine Oocytes (우 난포란의 체외수정과 발육)

  • 김정익
    • Korean Journal of Animal Reproduction
    • /
    • v.13 no.2
    • /
    • pp.98-104
    • /
    • 1989
  • Successful techniques of in vitro fertilization(IVF) are valuable for studying the process of fertilization and for developing economical procedures for gene and nuclear transfer in farm animals. To date, bovine IVF system has been developed with oocytes in vitro or vitro, but the resulting zygotes exhibit limited embryonic development after in vitro culture. Even though in vitro matured oocytes achieved high fertilization and cleavage rates, these embryos appear extremly low rate of pregnancies when transferred to synchronized recipients. Development of early bovine embryos in vitro is generally arrested at the 8-to 16-cell stage. However, recent use of somatic cells such as trophoblastic vesicle, granulosa and oviduct epithelial cell for co-culture with early bovine embryos has proven effective for development of embryos, matured and fertilized in vitro, past the in vitro cell blocks. These factors clearly indicate the value of the co-culture system in promoting development of bovine oocytes matured and fertilized in vitro to morula or blastocyst stage in vitro. In addition, co-culture system may beome a tool for evaluation of viability of ova that have been manipulated by procedures such as splitting, microinjection and nuclear transfer.

  • PDF

Pollutant Concentrations at Experimental Paddy Plots during Irrigation Season (관개기 시험구 논에서의 오염물질의 농도특성)

  • Cho, Jae-Won;Kim, Jin-Soo;Oh, Kwang-Young;Oh, Seung-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.3
    • /
    • pp.97-106
    • /
    • 2006
  • The pollutant concentrations at experimental paddy plots with three (excessive, standard, reduced) different fertilization rates were investigated during 2001-2002 irrigation seasons. Mean concentrations of pollutants in ponded water were not significantly different among three experimental plots, but the T-N concentrations in percolated water significantly depended on fertilization rates. The T-N, T-P and $COD_{Cr}$, concentrations in ponded water during early irrigation season (late May to mid-June) were much higher than those during later irrigation season likely due to fertilization and low uptake by young rice crops. The T-N concentrations decreased but the concentrations of T-P and $COD_{Cr}$, increased three days after tillering fertilization. The removal rates of T-N by paddy plots were $0.13-0.16g/m^2{\cdot}d$ for an excessive fertilization plot, $0.08-0.25g/m^2{\cdot}d$ for a standard fertilization plot, and $0.03-0.34g/m^2{\cdot}d$ for a reduced fertilization plot three days after tillering fertilization. On the other hand, T-P and $COD_{Cr}$, were released three days after tillering fertilization.

Functional Analyses of Centrosomal Proteins, Nek2 and NuMA in Development of Mouse Gametes and Early Embryos

  • Youn, Hong-Hee;Oh, Hwa-Soon;Lee, Kwang-Hee;Son, Chae-Ick;Lee, Sang-Ho
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.96-96
    • /
    • 2003
  • Nek2 (NIMA-related protein) is a mammalian cell cycle-regulated kinase that involves in chromosome condensation and centrosome regulation and NuMA (nuclear mitotic apparatus protein) is involved in spindle assembly during a cell cycle. The cellular distribution and organization of the centrosomal components is completely unknown during fertilization and embryonic development. We examined distribution of two well-known centrosomal proteins, Nek2 and NuMA in mouse gametes and embryos to get an insight in the reorganization of centrosomal proteins during germ cell development and early fertilization. Spermatogenic cells, gametes, and embryos were analyzed with anti-Nek2 or -NuMA antibodies by immunological assay, RT-PCR, and overexpression through gene transfection. Mitotically or meiotically active spermatogenic cells were intensively stained with these antibodies in both centrosomes and cytoplasm, whereas the oocytes showed different staining patterns depending on the meiotic stages. During maturation, GV, GVBD, and MI stage were clearly stained with NuMA antibody in the nucleus or cytoplasm at MII. Also, Nek2 was detectable in cytoplasm as scattered spots or chromosome associated at MII. In early developmental embryo, NuMA was detected in nucleus of each blastomere, while Nek2 was detected in cytoplasm. In contrast to previously reported results, Nek2 and NuMA were detected in both decondensing head, and the centriole of demembranated and decondensed sperm or whole body of trypsin-treated sperm for Nek2. During meiotic progress in oocytes, transcripts levels were the highest in MI stage and then downregulated in MII. Also, it shows dramatically change in early developmental embryos, firstly, it was increased until 4 cell stage and reduced in 8 cell stage, and finally, transcript levels were upregulated until blastoscyst. This finding suggests that cnetrosomal component may play an important role in reorganizing of functional centrosome during fertilization process and subsequent development.

  • PDF

Effect of the Application of Fertilizer in Autumn on the Development of Korean Lawn grass( Zoysia japonica Steud.) in the Following Spring (추비의 시용이 한국잔디(Zoyisa japonica Steud.)의 춘계생육에 미치는 영향)

  • 이정재;김인철;함선규;김성태;양승원
    • Asian Journal of Turfgrass Science
    • /
    • v.6 no.1
    • /
    • pp.39-45
    • /
    • 1992
  • This experiment was undertaken to study effect of fall Fertitizarion on spring regrowth of Korean lawngrass( Zoysia japonica Steud ) Results obtained are summarized as follows : 1. late fall fertilization stimulated the spring regrowth of Korean lawngrass. hut early spring application showed little effect on that 2. The yield of clippings on May 21 was obviously greater in late fertilization plots(treatment C, D and E) than other plots(treatment A, B and control, but there was no significant difference in clipping yields of C, D and F treatment. 3. Both nitrogen and reducing sugar contents of runner fell down in spring. It was suggested thatthese constituents be translocated from runner to other parts during the budding period. 4. The nitrogen content of runner was obviously mote in the plot of late fall fertilization. In contrast to nitrogen, no obvious difference was found in reducing sugar content of runner of seven application date. It was suggested that the roots of plant be still able to absorb to absorb nitrogen under dormancy. .5.From these results. late fall fertilization enhances the development of Korean lawngrass in the following spring. But early spring application shows little effect on spring regrowth.

  • PDF

Impact of glycosylation on the unimpaired functions of the sperm

  • Cheon, Yong-Pil;Kim, Chung-Hoon
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.42 no.3
    • /
    • pp.77-85
    • /
    • 2015
  • One of the key factors of early development is the specification of competence between the oocyte and the sperm, which occurs during gametogenesis. However, the starting point, growth, and maturation for acquiring competence during spermatogenesis and oogenesis in mammals are very different. Spermatogenesis includes spermiogenesis, but such a metamorphosis is not observed during oogenesis. Glycosylation, a ubiquitous modification, is a preliminary requisite for distribution of the structural and functional components of spermatids for metamorphosis. In addition, glycosylation using epididymal or female genital secretory glycans is an important process for the sperm maturation, the acquisition of the potential for fertilization, and the acceleration of early embryo development. However, nonemzymatic unexpected covalent bonding of a carbohydrate and malglycosylation can result in falling fertility rates as shown in the diabetic male. So far, glycosylation during spermatogenesis and the dynamics of the plasma membrane in the process of capacitation and fertilization have been evaluated, and a powerful role of glycosylation in spermatogenesis and early development is also suggested by structural bioinformatics, functional genomics, and functional proteomics. Further understanding of glycosylation is needed to provide a better understanding of fertilization and embryo development and for the development of new diagnostic and therapeutic tools for infertility.

Studies on the Grassland management in Late-AuTumn and Early-spring VIII. Effect of nitrogen fertilization levelin early spring on growth , yield and nutritive value of grasses (월동전후 초지관리에 관한 연구 VIII. 이른 봄 질소시비수준이 목초의 생육과 수량 및 사료가치에 미치는 영향)

  • Seo, Sung;Lee, Moo-Young
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.11 no.1
    • /
    • pp.17-21
    • /
    • 1991
  • A field experiment was carried out to determine the effects of nitrogen(N) fertilization levels(0, 30, 60, 90 and 120 kg/ha) in early spring on the growth, dry matter(DM) yield, seasonal distribution of production and nutritive value of grasses. Additional N after the first, second and third harvest were applied as 60, 60 and 30 kg/ha, equally in 1989. Grass growth and DM yield were significantly increased(p$NO_3$-N concentration was not affected by N level of early spring. It is suggested that, therefore, N application in early spring is essential, and 60 to 90 kg/ha of N application may be desirable in early spring.

  • PDF

Adenosine Modulate the Oocyte Developmental Competence by Exposing Stages and Synthetic Blocking during In Vitro Maturation

  • Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.20 no.2
    • /
    • pp.127-133
    • /
    • 2016
  • Purine metabolism is known factor for nuclear maturation of oocytes through both follicle cells and oocyte itself. However, it is largely unknown the roles of purine metabolism in the oocyte competence for fertilization and early development. In this study, the effects of adenosine in oocyte competence for development were examined using adenosine and its synthetic inhibitors. Adenosine treatment from GV intact stage for 18 hr (fGV) caused of decrease the fertilization rate but of increase the cleavage rate compared from the other stage treatment groups. Hadacidin did not effect on fertilization rate but increased cleavage rate without stage specificity. Adenosine did not block the effects of hadacidin with the exception of fGV group. Inhibition of purine synthetic pathways the fertilization rate was decreased in the fGV and fGVB groups but increased in the fMII group. Exogenous adenosine caused of decrease fertilization rate in the fGVB group but increase in the fMII group. Cleavage rate was dramatically increased in the adenosine treatment with synthetic inhibitors. It means that the metabolism of purine has stage specific effects on fertilization and cleavage. Exogenous adenosine had only can improve oocyte developmental competence when it treated at GV intact stage. On the other hand, endogenous synthesis in all maturation stage cause of increase the cleavage rate without effects on fertilization. These data suggest that adenosine at GV stage as a paracrine fashion and inhibitions of endogenous adenosine in all stage improve oocyte developmental competence.