• Title/Summary/Keyword: early age concrete

Search Result 583, Processing Time 0.045 seconds

The Measurement of Concrete Deformations at Early Age using Fiber-Optic Bragg Grating Sensors (광섬유 GRATING SENSOR를 이용한 초기재령 콘크리트의 변형 측정)

  • 김지상;이상배;김남식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1238-1241
    • /
    • 2000
  • The deformations of concrete specimens were measured at early at early ages, in order to verify the applicability of FBG(Fiber Bragg Grating) sensors. The FBG sensors were directly buried at various locations in the beam-type RC specimens at the time of fabrication. In this experiment, the changes of strains in concrete at early age were successfully measured as the movement in wavelength of light signals. The FBG sensors may be a very effective tool to investigate the mechanical/thermal behavior inside of concrete structures.

  • PDF

Experiment Study on the Improvement of the Early-Age Strength of Fly Ash Concrete Using CSA (CSA를 사용한 플라이애시 콘크리트의 초기강도 개선을 위한 실험연구)

  • Park, Ji-Sun;Jeon, Chan-Soo
    • Korean Journal of Materials Research
    • /
    • v.23 no.12
    • /
    • pp.687-694
    • /
    • 2013
  • This study was performed with an aim to improve the early-age strength of concrete containing fly ash, which is known to increase the long-age strength of concrete, reduce drying shrinkage, and enhance water tightness. The composition was partially substituted with calcium sulfoaluminate (CSA), from which ettringite is actively produced, in the early stages of hydration to verify its effect on improving the early-age strength and to determine the optimal mixing ratio. For this purpose, up to 30 % of the cement weight was substituted with fly ash, and the amount of CSA substitution was 8% of the fly ash weight. The mixtures were then fabricated into concrete specimens for compressive strength measurement and analysis of the correlation between the hydration products and the compressive strength.

Autogenous Shrinkage of VES-LMC considering Thermal Deformation (VES-LMC의 열 변형을 고려한 자기수축)

  • Choi Pan Gil;Lee Jin Bum;Choi Seung Sic;Yun Kyong Gu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.781-784
    • /
    • 2005
  • Concrete structures often present volumetrical changes particularly due to thermal and moisture related shrinkages. Volumetric instability is detrimental to the performance and durability of concrete structures because structural elements are usually restrained. These restrained shrinkages develope tensile stresses which often results in cracking in combination with the low fracture resistance of concrete. Early-age defects in high-performance concrete due to thermal and autogenous deformation shorten the life cycle of concrete structures. Thus, it is necessary to examine the behavior .of early-age concrete at the stages of design and construction. The purpose of this study was to propose a shrinkage models of VES-LMC (very-early strength latex-modified concrete) at early-age considering thermal deformation and autogenous shrinkage.

  • PDF

Ultrasonic Pulse Velocity of Normal Aggregate Concrete and Lightweight Aggregate Concrete at Early age According to Elapsed Time (초기재령에서 보통골재 및 경량골재 콘크리트의 시간경과에 따른 초음파 속도 변화)

  • Kim, Won Chang;Choi, Hyeong Gil;Nam, Jeong Soo;Kim, Gyu Young;Lee, Tae Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.61-62
    • /
    • 2021
  • Because of the problem of increasing self-weight due to the enlargement and high-rise of buildings using normal aggregate concrete, the need for structural lightweight aggregate concrete increases. However, early strength prediction is required when placing structural lightweight aggregate concrete, but research is insufficient. In this study, the ultrasonic pulse velocity of normal aggregate concrete and lightweight aggregate concrete was measured at early age. As a result, the ultrasonic pulse velocity of lightweight aggregate concrete was lower than normal aggregate concrete according to elapsed time at early age.

  • PDF

A Study on the Improvement of an Early-age Quality of Blast-Furnace Slag Concrete (고로슬래그 콘크리트의 초기 품질 하락 극복을 위한 연구)

  • 반성수;최봉주;유득현;전영환;조현태
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1215-1220
    • /
    • 2000
  • Blast-Furnace Slag, a by-product of the iron or steel industry, has potential sa a cementitious material. The addition of a Blast-Furnace Slag generally reduces the heat of hydration and can confer significant improvements in resistance to sulfate attack and alkali-aggregate reaction, as well as increases in ultimate strength. But it also reduces early-age strength. In this study, for the purpose of improvement of early-age quality of Blast-Furnace Slag concrete, we choose blaine fineness of $6, 000~8, 000cm^2/g$ of Blast-Furnace Slag, and investigate the various properties of concrete. As a result, workability and early-age strength of Blast-Furnace Slag concrete were improved according to the increase of blaine fineness of Blast-Furnace Slag.

Early-Age and Restrained Shrinkage of Very-Early Strength Latex Modified Concrete (초속경 라텍스개질 콘크리트의 초기수축 및 구속건조수축)

  • Choi, Pan-Gil;Kim, Young-Gon;Sim, Do-Sic;Lee, Bong-Hak
    • Journal of Industrial Technology
    • /
    • v.25 no.A
    • /
    • pp.49-56
    • /
    • 2005
  • Recently, very-early strength latex-modified concrete(below ; VES-LMC) has been developed for repairing and overlaying the old concrete bridge deck. VES-LMC provides the advantage of very-early-strength, as well as high flexural strength, bond strength, durability, resistance to corrosion, reduced water permeability and resistance to damage from freeze-thaw cycles. The compressive and flexural strength of VES-LMC are 21 MPa and 4.5 MPa at 3 hours after concrete placing, respectively. However, VES-LMC would have a relatively large shrinkage at early-age because of reduced water-cement ratio, big water self-dissipation, and rapid hydration reaction. Therefore, the purpose of this study was to evaluate the early-age and restrained shrinkage of VES-LMC, having an experimental variables such as latex contents and cement types. The latex contents included 0%, 5%, 10%, 15% and 20%, and the cement types included ordinary portland cement and very-early strength cement.

  • PDF

An Experimental Study on Strength Properties of Concrete Using Blast-Furnace Slag Subjected to Frost Damage at Early Age (초기동해를 입은 고로슬래그 콘크리트의 강도발현 특성에 관한 실험적 연구)

  • 최성우;반성수;최봉주;유득현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.629-634
    • /
    • 2001
  • Recently, to consider financial and constructive aspect, usage of Admixture, like Blast-Furnace Slag and Fly-Ash, are increased. Also the use of cold-weather-concrete is increased. Blast-furnace Slag, a by-product of steel industry, have many advantage, to reduce the heat of hydration, increase in ultimate strength and etc. But it also reduces early-age strength, so it is prevented from using of Blast-Furnace Slag at cold-weather-concrete. In this study, for the purpose of increasing usage of Blast-Furnace Slag at cold-weather-concrete, it is investigated the strength properties of concrete subjected to frost damage for the cause of early age curing. According to this study, if early curing is carried out before having frost damage, the strength of concrete, subjected to frost damage, is recovered. And that properties is not connected with the frost cause.

  • PDF

Minimum Curing Time Prediction of Early Age Concrete to Prevent Frost Damage (동해방지를 위한 초기재령 콘크리트의 최소 양생 시간 예측)

  • Pae, Su-Won;Yi, Seong-Tae;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.27-37
    • /
    • 2007
  • The purpose of this study is to propose a method to predict the minimum curing time of early age concrete required to prevent frost damage. Tests were performed to examine major factors, which affect the compressive strength of concrete frozen at early ages and investigate the source of frost damage at early age concrete. The results from the tests showed that the loss rate of compressive strength decreases as the beginning time of frost damage was delayed and water-cement ratio was lower. In addition, the test results also showed that concrete made with type III cement was less susceptible to frost damage than concrete made with ordinary Portland cement and frost damage occurred through the formation of ice lenses. When early age concrete is being damaged by frozen, a phase transition into ice of free water presented at the capillary pores of the concrete gives a reason for the decrease of compressive strength. Accordingly, the frost resistance of fresh concrete can be determined based on the saturation degree of the capillary pores. The method to predict the minimum curing time was suggested using the concept of critical saturation degree of the capillary pores.

Estimation of Mechanical Properties of Concrete in Early Age by Resonance Frequency Test (공명주기식 동탄성계수를 이용한 초기재령 콘크리트의 역학적 성질 예측)

  • Kim, Jin-Keun;Kiim, Hoon;Noh, Jae-Ho
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.5
    • /
    • pp.164-171
    • /
    • 1995
  • Drying shrinkage and hydration heat are important factors on the initiation of the crack in con crete at early age. Therefore, the stress caused by hydration heat and drying shrinkage should be .analyzed to predict whether the crack occurrs or not. And, mechanical properties of early age concrete is also required for the predicting crack formation In this study, non-destructive test method of resonance frequency was used to find the relation between dynamic modulus and mechanical properties of concrete in early age. Test results were compared with existing equations, and a new equation based on test. results in this study and other data was also proposed

Finite element analysis of concrete cracking at early age

  • Aurich, Mauren;Filho, Americo Campos;Bittencourt, Tulio Nogueira;Shah, Surendra P.
    • Structural Engineering and Mechanics
    • /
    • v.37 no.5
    • /
    • pp.459-473
    • /
    • 2011
  • The study of the early age concrete properties is becoming more important, as the thermal effects and the shrinkage, even in the first hours, could generate cracks, increasing the permeability of the structure and being able to induce problems of durability and functionality in the same ones. The detailed study of the stresses development during the construction process can be decisive to keep low the cracking levels. In this work a computational model, based on the finite element method, was implemented to simulate the early age concrete behavior and, specially, the evaluation of the cracking risk. The finite element analysis encloses the computational modeling of the following phenomena: chemical, thermal, moisture diffusion and mechanical which occur at the first days after the concrete cast. The developed software results were compared with experimental values found in the literature, demonstrating an excellent approach for all the implemented analysis.