in the real world situations that some jobs need be processed only on certain limited machines frequently occur due to the capacity restrictions of machines such as tools fixtures or material handling equipment. In this paper we consider n-job non-preemptive and m parallel machines scheduling problem having two machines group. The objective function is to minimize the sum of earliness and tardiness with different release times and due dates. The problem is formulated as a mixed integer programming problem. The problem is proved to be Np-complete. Thus a heuristic is developed to solve this problem. To illustrate its suitability and efficiency a proposed heuristic is compared with a genetic algorithm and tabu search for a large number of randomly generated test problems in ship engine assembly shop. Through the experimental results it is showed that the proposed algorithm yields good solutions efficiently.
Proceedings of the Korean Operations and Management Science Society Conference
/
1996.10a
/
pp.295-298
/
1996
We consider a nonpreemptive single-machine scheduling problem to minimize the mean squared deviation(MSD) of job completion times about a common due date d with a maximum tardiness constraint, i.e., maximum tardiness is less than or equal to the given allowable amount, .DELTA.(MSD/T$_{max}$ problem). We classify the .DELTA.-unconstrained cases in the MSD/T$_{max}$ problem. We provide bounds to discern each case for the problem. It is also shown that the .DELTA.-unconstrained MSD/T$_{max}$ problem is equivalent to the unconstrained MSD problem and the tightly .DELTA.-constrained MSD/T$_{max}$ problem with n jobs and a maximum allowable tardiness .DELTA. can be converted into the constrained MSD problem with a common due date .DELTA. and n-1 jobs. Finally, the solution procedure for MSD/T$_{max}$ problem is provided. provided.
Pongcharoen, Pupong;Khadwilard, Aphirak;Hicks, Christian
Industrial Engineering and Management Systems
/
v.7
no.3
/
pp.204-213
/
2008
Companies that produce capital goods need to schedule the production of products that have complex product structures with components that require many operations on different machines. A feasible schedule must satisfy operation and assembly precedence constraints. It is also important to avoid deadlock situations. In this paper a Genetic Algorithm (GA) has been developed that includes a new repair process that rectifies infeasible schedules that are produced during the evolution process. The algorithm was designed to minimise the combination of earliness and tardiness penalties and took into account finite capacity constraints. Three different sized problems were obtained from a collaborating capital goods company. A design of experimental approach was used to systematically identify that the best genetic operators and GA parameters for each size of problem.
Journal of the Korean Operations Research and Management Science Society
/
v.23
no.1
/
pp.29-41
/
1998
This paper addresses the problem of scheduling a set of jobs with a common due data on a single machine. The objective is to minimize the sum of the earliness and tardiness of jobs subject to $T_{max}{\le}{\Delta}\;for{\Delta}{\ge}0$. Properties for the $MAD/T_{max}$ problem are found and the problem is shown to be NP-complete in the ordinary sense. According to the range of Δ, the problem can be solved in polynomial time. Also, some special cases where an optimal schedule is found in polynomial time are discussed.
Proceedings of the Korean Operations and Management Science Society Conference
/
2003.05a
/
pp.1071-1076
/
2003
Evolutionary algorithm is recognized as a promising approach to solving multi-objective combinatorial optimization problems. When no preference information of decision makers is given, multi-objective optimization problems have been commonly used to search for diverse and good Pareto optimal solution. In this paper we propose a new multi-objective evolutionary algorithm based on competitive coevolutionary algorithm, and demonstrate the applicability of the algorithm. The proposed algorithm is designed to promote both population diversity and rapidity of convergence. To achieve this, the strategies of fitness evaluation and the operation of the Pareto set are developed. The algorithm is applied to job shop scheduling problems (JSPs). The JSPs have two objectives: minimizing makespan and minimizing earliness or tardiness. The proposed algorithm is compared with existing evolutionary algorithms in terms of solution quality and diversity. The experimental results reveal the effectiveness of our approach.
Journal of the Korean Operations Research and Management Science Society
/
v.25
no.2
/
pp.47-57
/
2000
In this paper we consider an n-job non-preemptive and identical parallel machine scheduling problem of minimizing the sum of earliness and tardiness with different release times and due dates. In the real world this problem is more realistic than the problems that release times equal to zero or due dates are common. The problem is proved to be NP-complete. Thus a heuristic is developed to solve this problem To illustrate its suitability a proposed heuristic is compared with a genetic algorithm for a large number of randomly generated test problems. Computational results show the effectiveness and efficiency of proposed heuristic. In summary the proposed heuristic provides good solutions than genetic algorithm when the problem size is large.
Proceedings of the Korea Association of Information Systems Conference
/
2004.11a
/
pp.409-416
/
2004
동적 공급사슬망은 복잡하고 다양한 이해관계를 가진 기업들로 구성되어 있다. 다수의 구매자로부터 주문 의뢰가 동시다발적으로 발생하므로 하위 구성원들은 경쟁적 관계에 놓이게 된다. 그러므로 최적의 공급사슬구성을 위해서는 수평적 경쟁 관계를 고려하여 구성주체들간의 협력관계를 통해 이를 해결하여야 한다. 지금까지의 스케줄링 문제에서는 상위의 구성원이 하위 구성원들을 일방적으로 선택하는 의사결정이 이루어졌으나 본 문제에서는 구성원간의 협력관계에서 에이전트를 통한 다자간 협상을 통해 공급사슬 전체의 최적화를 구성하는 방법론을 제시한다. 본 협상방법론은 단일기계에서 상이한 납기일, 조기생산(earliness), 지연생산(tardiness)을 동시에 고려하였으며 전체 공급사슬의 평균절대편차(Mean Absolute Deviation)의 최소화를 목적으로 하고 있다. 본 협상방법론의 효과성을 증명하기 위해 분지한계법(Branch & Bound)과 비교하고, 알고리즘 구현을 통해 구매자 협상방법론의 최적화 여부를 실험을 통해 증명하였다.
In this article, a simulation model of a microwave oven assembly line is developed to identify system parameters to improve the system performances such as work-in-process inventories, production lead time, mean earliness, mean tardiness and in-time completion rate. System parameters investigated include dispatching rules, lot sizing, setup time reduction, demand increase, productivity improvement, production scheduling, hardware characteristics, etc. The model has been developed using SIMAN simulation language which has been demonstrated to be a powerful tool to simulate complex manufacturing systems. We have suggested the results obtained to improve the system performances of an existing production line.
In this paper, we present a modeling approach to production planning for an actual production line and a heuristic method. We also illustrate the successful implementation of the proposed method on the production line. A heuristic algorithm called the push-back algorithm was designed for a single machine earliness/tardiness production planning with distinct due date. It was developed by combining a minimum slack time rule and shortest processing time rule with a push-back procedure. The results of a numerical experiment on the heuristic's performance are presented in comparison with the results of IBM ILOG CPLEX. The proposed algorithm was applied to an actual case of production planning at Woongjin Chemical, a leading manufacturer of filter products in South Korea. The seven-month execution of our algorithm led to a 24.5% decrease in the company's inventory level, thus demonstrating its practicality and effectiveness.
We consider the stale problem which makes the training speed slow in the field of deep learning. The problem can be formulated as a single-machine scheduling problem with generalized due dates in which the objective is to minimize the total earliness and tardiness. We show that the problem can be solved in polynomial time if the orders of the small and the large jobs in an optimal schedule are known in advance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.